15,330 research outputs found

    Limits to Modularity: A Review of the Literature and Evidence from Chip Design

    Get PDF
    This working paper has been prepared as part of the East-West Center's research project on Globalization of Knowledge Work: Why is Chip Design Moving to Asia. In this paper, Dieter assesses what we know about the limits to modularity and their impact on firm organization and industry structure. He focuses on evidence form chip design, drawing on interview on 2002 and 2003 with a sample of 60 companies and 15 research institutions that are involved in chip design in the US, Taiwan, Korea, China and Malaysia. It is summarized "stylized" propositions of the modularity literature that are well-established, as well as predictions that are controversial. In addition, important limits to modularity and relevant management responses were reviewed.

    From manufacturing to design : an essay on the work of Kim B. Clark. Harvard Business School Working Paper- 07-057

    Get PDF
    In this paper, we describe Clark's research and discuss his contributions to management scholarship and economics. We look at three distinct bodies of work. In the first, Clark (in conjunction with Robert Hayes and Steven Wheelwright) argued that the abandonment by U.S. managers of manufacturing as a strategic function exposed U.S. companies to Japanese competition in terms of the cost and quality of goods. In the second, conducted with Wheelwright, Bruce Chew, Takahiro Fujimoto, Kent Bowen and Marco Iansiti, Clark made the case that product development could be managed in new ways that would lead to significant competitive advantage for firms. Finally, in work conducted with Abernathy, Rebecca Henderson and Carliss Baldwin, Clark placed product and process designs at the center of his explanation of how innovation determines the structure and evolution of industries.

    Internationalisation of Innovation: Why Chip Design Moving to Asia

    Get PDF
    This paper will appear in International Journal of Innovation Management, special issue in honor of Keith Pavitt, (Peter Augsdoerfer, Jonathan Sapsed, and James Utterback, guest editors), forthcoming. Among Keith Pavitt's many contributions to the study of innovation is the proposition that physical proximity is advantageous for innovative activities that involve highly complex technological knowledge But chip design, a process that creates the greatest value in the electronics industry and that requires highly complex knowledge, is experiencing a massive dispersion to leading Asian electronics exporting countries. To explain why chip design is moving to Asia, the paper draws on interviews with 60 companies and 15 research institutions that are doing leading-edge chip design in Asia. I demonstrate that "pull" and "policy" factors explain what attracts design to particular locations. But to get to the root causes that shift the balance in favor of geographical decentralization, I examine "push" factors, i.e. changes in design methodology ("system-on-chip design") and organization ("vertical specialization" within global design networks). The resultant increase in knowledge mobility explains why chip design - that, in Pavitt's framework is not supposed to move - is moving from the traditional centers to a few new specialized design clusters in Asia. A completely revised and updated version has been published as: " Complexity and Internationalisation of Innovation: Why is Chip Design Moving to Asia?," in International Journal of Innovation Management, special issue in honour of Keith Pavitt, Vol. 9,1: 47-73.

    Exploring the Duality between Product and Organizational Architectures: A Test of the Mirroring Hypothesis

    Get PDF
    A variety of academic studies argue that a relationship exists between the structure of an organization and the design of the products that this organization produces. Specifically, products tend to "mirror" the architectures of the organizations in which they are developed. This dynamic occurs because the organization's governance structures, problem solving routines and communication patterns constrain the space in which it searches for new solutions. Such a relationship is important, given that product architecture has been shown to be an important predictor of product performance, product variety, process flexibility and even the path of industry evolution. We explore this relationship in the software industry. Our research takes advantage of a natural experiment, in that we observe products that fulfill the same function being developed by very different organizational forms. At one extreme are commercial software firms, in which the organizational participants are tightly-coupled, with respect to their goals, structure and behavior. At the other, are open source software communities, in which the participants are much more loosely-coupled by comparison. The mirroring hypothesis predicts that these different organizational forms will produce products with distinctly different architectures. Specifically, loosely-coupled organizations will develop more modular designs than tightly-coupled organizations. We test this hypothesis, using a sample of matched-pair products. We find strong evidence to support the mirroring hypothesis. In all of the pairs we examine, the product developed by the loosely-coupled organization is significantly more modular than the product from the tightly-coupled organization. We measure modularity by capturing the level of coupling between a product's components. The magnitude of the differences is substantial - up to a factor of eight, in terms of the potential for a design change in one component to propagate to others. Our results have significant managerial implications, in highlighting the impact of organizational design decisions on the technical structure of the artifacts that these organizations subsequently develop.Organizational Design, Product Design, Architecture, Modularity, Open-Source Software.

    Open Source Software Production, Spontaneous Input, and Organizational Learning

    Get PDF
    This work shows that the modular organization of voluntary Open Source Software (OSS) production, whereby programmers supply effort of their accord, capitalizes more on division than on specialization of labor. This is so because voluntary OSS production is characterized by an organizational learning process that dominates the individual one. Organizational learning reveals production choices that would otherwise remain unknown, thereby increasing productivity and indirectly reinforcing incentives to undertake collective problem solving.Division of Labor; Mistake-ridden Learning; Modularity; Open Source Software; Self-selection; Voluntary Production

    Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli

    Get PDF
    The field of metabolic engineering has the potential to produce a wide variety of chemicals in both an inexpensive and ecologically-friendly manner. Heterologous expression of novel combinations of enzymes promises to provide new or improved synthetic routes towards a substantially increased diversity of small molecules. Recently, we constructed a synthetic pathway to produce d-glucaric acid, a molecule that has been deemed a “top-value added chemical” from biomass, starting from glucose. Limiting flux through the pathway is the second recombinant step, catalyzed by myo-inositol oxygenase (MIOX), whose activity is strongly influenced by the concentration of the myo-inositol substrate. To synthetically increase the effective concentration of myo-inositol, polypeptide scaffolds were built from protein–protein interaction domains to co-localize all three pathway enzymes in a designable complex as previously described (Dueber et al., 2009). Glucaric acid titer was found to be strongly affected by the number of scaffold interaction domains targeting upstream Ino1 enzymes, whereas the effect of increased numbers of MIOX-targeted domains was much less significant. We determined that the scaffolds directly increased the specific MIOX activity and that glucaric acid titers were strongly correlated with MIOX activity. Overall, we observed an approximately 5-fold improvement in product titers over the non-scaffolded control, and a 50% improvement over the previously reported highest titers. These results further validate the utility of these synthetic scaffolds as a tool for metabolic engineering.United States. Office of Naval Research (Young Investigator Program, Grant No. N000140510656)Synthetic Biology Engineering Research CenterNational Science Foundation (U.S.) (Grant No. EEC-0540879)National Science Foundation (U.S.) (Grant No. CBET-0756801

    The development of a tool to promote sustainability in casting processes

    Get PDF
    The drive of the manufacturing industry towards productivity, quality and profitability has been supported in the last century by the availability of relatively cheap and abundant energy sources with limited focus on the minimisation of energy and material waste. However, in the last decades, more and more stringent regulations aimed at reducing pollution and consumption of resources have been introduced worldwide and in particular in Europe. Consequently, a highly mature and competitive industry like foundry is expecting challenges that an endeavour towards sustainability can turn into significant opportunities for the future. A tool to undertake a systematic analysis of energy and material flows in the casting process is being developed. An overview of the computer program architecture is presented and its output has been validated against real-world data collected from foundries
    corecore