3 research outputs found

    Modular instrument for a haptically-enabled robotic surgical system (HeroSurg)

    Full text link
    To restore the sense of touch in robotic surgical systems, a modular force feedback-enabled laparoscopic instrument is developed and employed in a robotic-assisted minimally invasive surgical system (HeroSurg). Strain gauge technology is incorporated into the instrument to measure tip/tissue lateral interaction forces. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities, e.g., cutter, grasper, and dissector, without losing force sensing capability. Series of experiments are conducted and results are reported to evaluate force sensing capability of the instrument. The results reveal mean errors of 1.32 g and 1.98° in the measurements of tip/tissue load magnitude and direction across all experiments, respectively

    Medical image synthesis using generative adversarial networks: towards photo-realistic image synthesis

    Full text link
    This proposed work addresses the photo-realism for synthetic images. We introduced a modified generative adversarial network: StencilGAN. It is a perceptually-aware generative adversarial network that synthesizes images based on overlaid labelled masks. This technique can be a prominent solution for the scarcity of the resources in the healthcare sector

    Sliding mode control for a surgical teleoperation system via a disturbance observer

    Get PDF
    To obtain accurate trajectory tracking with robustness and faithful force feedback in a practical application, a sliding mode controller (SMC) combined with a compensation controller based on a nonlinear disturbance observer (DOB) is proposed. The DOB estimates the disturbances arising mainly from the uncertain dynamic model of a surgical manipulator, frictional forces and external interaction forces, and compensates for these disturbances in the control law. Accordingly, it alleviates the chattering problem caused by t
    corecore