7,871 research outputs found
Unification modulo a partial theory of exponentiation
Modular exponentiation is a common mathematical operation in modern
cryptography. This, along with modular multiplication at the base and exponent
levels (to different moduli) plays an important role in a large number of key
agreement protocols. In our earlier work, we gave many decidability as well as
undecidability results for multiple equational theories, involving various
properties of modular exponentiation. Here, we consider a partial subtheory
focussing only on exponentiation and multiplication operators. Two main results
are proved. The first result is positive, namely, that the unification problem
for the above theory (in which no additional property is assumed of the
multiplication operators) is decidable. The second result is negative: if we
assume that the two multiplication operators belong to two different abelian
groups, then the unification problem becomes undecidable.Comment: In Proceedings UNIF 2010, arXiv:1012.455
Parametric, Secure and Compact Implementation of RSA on FPGA
We present a fast, efficient, and parameterized modular multiplier and a secure exponentiation circuit especially intended for FPGAs on the low end of the price range. The design utilizes dedicated block multipliers as the main functional unit and Block-RAM as storage unit for the operands. The adopted design methodology allows adjusting the number of multipliers, the radix used in the multipliers, and number of words to meet the system requirements such as
available resources, precision and timing constraints. The architecture, based on the Montgomery modular multiplication algorithm, utilizes a pipelining technique that allows concurrent operation of hardwired multipliers. Our
design completes 1020-bit and 2040-bit modular multiplications in 7.62 μs and 27.0 μs, respectively. The multiplier uses a moderate amount of system resources while achieving the best area-time product in literature. 2040-bit modular exponentiation engine can easily fit into Xilinx Spartan-3E 500; moreover the exponentiation circuit withstands known side channel attacks
Fast Quantum Modular Exponentiation
We present a detailed analysis of the impact on modular exponentiation of
architectural features and possible concurrent gate execution. Various
arithmetic algorithms are evaluated for execution time, potential concurrency,
and space tradeoffs. We find that, to exponentiate an n-bit number, for storage
space 100n (twenty times the minimum 5n), we can execute modular exponentiation
two hundred to seven hundred times faster than optimized versions of the basic
algorithms, depending on architecture, for n=128. Addition on a neighbor-only
architecture is limited to O(n) time when non-neighbor architectures can reach
O(log n), demonstrating that physical characteristics of a computing device
have an important impact on both real-world running time and asymptotic
behavior. Our results will help guide experimental implementations of quantum
algorithms and devices.Comment: to appear in PRA 71(5); RevTeX, 12 pages, 12 figures; v2 revision is
substantial, with new algorithmic variants, much shorter and clearer text,
and revised equation formattin
- …
