2,437 research outputs found

    Fast Quantum Modular Exponentiation

    Full text link
    We present a detailed analysis of the impact on modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space tradeoffs. We find that, to exponentiate an n-bit number, for storage space 100n (twenty times the minimum 5n), we can execute modular exponentiation two hundred to seven hundred times faster than optimized versions of the basic algorithms, depending on architecture, for n=128. Addition on a neighbor-only architecture is limited to O(n) time when non-neighbor architectures can reach O(log n), demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices.Comment: to appear in PRA 71(5); RevTeX, 12 pages, 12 figures; v2 revision is substantial, with new algorithmic variants, much shorter and clearer text, and revised equation formattin

    Unification modulo a partial theory of exponentiation

    Full text link
    Modular exponentiation is a common mathematical operation in modern cryptography. This, along with modular multiplication at the base and exponent levels (to different moduli) plays an important role in a large number of key agreement protocols. In our earlier work, we gave many decidability as well as undecidability results for multiple equational theories, involving various properties of modular exponentiation. Here, we consider a partial subtheory focussing only on exponentiation and multiplication operators. Two main results are proved. The first result is positive, namely, that the unification problem for the above theory (in which no additional property is assumed of the multiplication operators) is decidable. The second result is negative: if we assume that the two multiplication operators belong to two different abelian groups, then the unification problem becomes undecidable.Comment: In Proceedings UNIF 2010, arXiv:1012.455

    Quantum networks for elementary arithmetic operations

    Get PDF
    Quantum computers require quantum arithmetic. We provide an explicit construction of quantum networks effecting basic arithmetic operations: from addition to modular exponentiation. Quantum modular exponentiation seems to be the most difficult (time and space consuming) part of Shor's quantum factorising algorithm. We show that the auxiliary memory required to perform this operation in a reversible way grows linearly with the size of the number to be factorised
    • …
    corecore