26,115 research outputs found

    Fast Recompilation of Object Oriented Modules

    Full text link
    Once a program file is modified, the recompilation time should be minimized, without sacrificing execution speed or high level object oriented features. The recompilation time is often a problem for the large graphical interactive distributed applications tackled by modern OO languages. A compilation server and fast code generator were developed and integrated with the SRC Modula-3 compiler and Linux ELF dynamic linker. The resulting compilation and recompilation speedups are impressive. The impact of different language features, processor speed, and application size are discussed

    Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry

    Get PDF
    Cortical synchronization at γ-frequencies (35–90 Hz) has been proposed to define the connectedness among the local parts of a perceived visual object. This hypothesis is still under debate. We tested it under conditions of binocular rivalry (BR), where a monkey perceived alternations among conflicting gratings presented singly to each eye at orthogonal orientations. We made multi-channel microelectrode recordings of multi-unit activity (MUA) and local field potentials (LFP) from striate cortex (V1) during BR while the monkey indicated his perception by pushing a lever. We analyzed spectral power and coherence of MUA and LFP over 4–90 Hz. As in previous work, coherence of γ-signals in most pairs of recording locations strongly depended on grating orientation when stimuli were presented congruently in both eyes. With incongruent (rivalrous) stimulation LFP power was often consistently modulated in consonance with the perceptual state. This was not visible in MUA. These perception-related modulations of LFP occurred at low and medium frequencies (<30 Hz), but not at γ-frequencies. Perception-related modulations of LFP coherence were also restricted to the low–medium range. In conclusion, our results do not support the expectation that γ-synchronization in V1 is related to the perceptual state during BR, but instead suggest a perception-related role of synchrony at low and medium frequencies

    Psychophysical and physiological evidence for fast binaural processing

    Get PDF
    The mammalian auditory system is the temporally most precise sensory modality: To localize low-frequency sounds in space, the binaural system can resolve time differences between the ears with microsecond precision. In contrast, the binaural system appears sluggish in tracking changing interaural time differences as they arise from a low-frequency sound source moving along the horizontal plane. For a combined psychophysical and electrophysiological approach, we created a binaural stimulus, called "Phasewarp," that can transmit rapid changes in interaural timing. Using this stimulus, the binaural performance in humans is significantly better than reported previously and comparable with the monaural performance revealed with amplitude-modulated stimuli. Parallel, electrophysiological recordings of binaural brainstem neurons in the gerbil show fast temporal processing of monaural and different types of binaural modulations. In a refined electrophysiological approach that was matched to the psychophysics, the seemingly faster binaural processing of the Phasewarp was confirmed. The current data provide both psychophysical and physiological evidence against a general, hard-wired binaural sluggishness and reconcile previous contradictions of electrophysiological and psychophysical estimates of temporal binaural performance

    MODULATION OF THE CGMP-GATED CHANNEL BY CALCIUM

    Get PDF
    Calcium acting through calmodulin has been shown to regulate the affinity of cyclic nucleotide-gated channels expressed in cell lines. But is calmodulin the Ca-sensor that normally regulates these channels

    Coherent pumping of a Mott insulator: Fermi golden rule versus Rabi oscillations

    Full text link
    Cold atoms provide a unique arena to study many-body systems far from equilibrium. Furthermore, novel phases in cold atom systems are conveniently investigated by dynamical probes pushing the system out of equilibrium. Here, we discuss the pumping of doubly-occupied sites in a fermionic Mott insulator by a periodic modulation of the hopping amplitude. We show that deep in the insulating phase the many-body system can be mapped onto an effective two-level system which performs coherent Rabi oscillations due to the driving. Coupling the two-level system to the remaining degrees of freedom renders the Rabi oscillations damped. We compare this scheme to an alternative description where the particles are incoherently pumped into a broad continuum.Comment: 4 pages, 3 figure

    Optimal Dynamical Decoherence Control of a Qubit

    Full text link
    A theory of dynamical control by modulation for optimal decoherence reduction is developed. It is based on the non-Markovian Euler-Lagrange equation for the energy-constrained field that minimizes the average dephasing rate of a qubit for any given dephasing spectrum.Comment: 6 pages, including 2 figures and an appendi
    corecore