4 research outputs found

    Printed closely spaced antennas loaded by linear stubs in a mimo style for portable wireless electronic devices

    Get PDF
    An easy-to-manufacture and efficient four-port-printed Multiple Input Multiple Output (MIMO) antenna operating across an ultra-wideband (UWB) region (2.9-13.6 GHz) is proposed and investigated here. The phenomenon of the polarization diversity is used to improve the isolation between MIMO antenna elements by deploying four orthogonal antenna elements. The proposed printed antenna (40 x 40 x 1.524 mm(3)) is made compact by optimizing the circular-shaped radiating components via vertical stubs on top of the initial design to maximally reduce unwanted interaction while placing them together in proximity. The measurements of the prototype MIMO antennas corroborate the simulation performance. The findings are compared to the recent relevant works presented in the literature to show that the proposed antenna is suitable for UWB MIMO applications. The proposed printed UWB MIMO antenna could be a good fit for compact portable wireless electronic devices

    Printed closely spaced antennas loaded by linear stubs in a MIMO style for portable wireless electronic devices

    Get PDF
    This article belongs to the Special Issue Transmit and Receive Techniques for Next Generation Massive MIMO Systems.An easy-to-manufacture and efficient four-port-printed Multiple Input Multiple Output (MIMO) antenna operating across an ultra-wideband (UWB) region (2.9–13.6 GHz) is proposed and investigated here. The phenomenon of the polarization diversity is used to improve the isolation between MIMO antenna elements by deploying four orthogonal antenna elements. The proposed printed antenna (40 × 40 × 1.524 mm3) is made compact by optimizing the circular-shaped radiating components via vertical stubs on top of the initial design to maximally reduce unwanted interaction while placing them together in proximity. The measurements of the prototype MIMO antennas corroborate the simulation performance. The findings are compared to the recent relevant works presented in the literature to show that the proposed antenna is suitable for UWB MIMO applications. The proposed printed UWB MIMO antenna could be a good fit for compact portable wireless electronic devices.This project received funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant 801538. Furthermore, this work was partially supported by the Researchers Supporting Project number (RSP-2021/58), King Saud University, Riyadh, Saudi Arabia

    Performance Comparison of TR and FSRUWB System Using Particle Filter: Effects of Frequency, Data Rate, Multi-Path and Multi-Channel Communication

    Get PDF
    In this study, we introduced a novel scheme based on Transmitted References (TR) and Frequency Shifted Reference (FSR) for ultra-wideband (UWB) system. By taking into account tracking loop-based particle filtering together with a data collecting approach for single and multi-path channel situations, the suggested method is an enhanced model. Each particle's location is determined using this filtering technique, which is then utilised to calculate the timing inaccuracy and regulate the UWB system's timing pulse. Also, it can tackle the multimodal distribution of errors then effectively approximate the optimal solution. The data distribution is discretised via a number of particles that are weighted samples evolving concerning time duration. The simulation results show that, in terms of error rate, number of particles, and delay response, the recommended model of FSR-UWB with particle filter performs better than the TR-UWB with and without considering particle filter

    Super compact UWB monopole antenna for small IoT devices

    Get PDF
    This article introduces a novel, ultrawideband (UWB) planar monopole antenna printed on Roger RT/5880 substrate in a compact size for small Internet of Things (IoT) applications. The total electrical dimensions of the proposed compact UWB antenna are 0.19 λo × 0.215 λo × 0.0196 λo with the overall physical sizes of 15 mm × 17 mm × 1.548 mm at the lower resonance frequency of 3.8 GHz. The planar monopole antenna is fed through the linearly tapered microstrip line on a partially structured ground plane to achieve optimum impedance matching for UWB operation. The proposed compact UWB antenna has an operation bandwidth of 9.53 GHz from 3.026 GHz up to 12.556 GHz at -10 dB return loss with a fractional bandwidth (FBW) of about 122%. The numerically computed and experimentally measured results agree well in between. A detailed time-domain analysis is additionally accomplished to verify the radiation efficiency of the proposed antenna design for the ultra-wideband signal propagation. The fabricated prototype of a compact UWB antenna exhibits an omnidirectional radiation pattern with the low peak measured gain required of 2.55 dBi at 10 GHz and promising radiation efficiency of 90%. The proposed compact planar antenna has technical potential to be utilized in UWB and IoT applications
    corecore