809 research outputs found

    Multimodal Remote Sensing Image Registration Based on Adaptive Multi-scale PIIFD

    Full text link
    In recent years, due to the wide application of multi-sensor vision systems, multimodal image acquisition technology has continued to develop, and the registration problem based on multimodal images has gradually emerged. Most of the existing multimodal image registration methods are only suitable for two modalities, and cannot uniformly register multiple modal image data. Therefore, this paper proposes a multimodal remote sensing image registration method based on adaptive multi-scale PIIFD(AM-PIIFD). This method extracts KAZE features, which can effectively retain edge feature information while filtering noise. Then adaptive multi-scale PIIFD is calculated for matching. Finally, the mismatch is removed through the consistency of the feature main direction, and the image alignment transformation is realized. The qualitative and quantitative comparisons with other three advanced methods shows that our method can achieve excellent performance in multimodal remote sensing image registration

    Toward Global Localization of Unmanned Aircraft Systems using Overhead Image Registration with Deep Learning Convolutional Neural Networks

    Get PDF
    Global localization, in which an unmanned aircraft system (UAS) estimates its unknown current location without access to its take-off location or other locational data from its flight path, is a challenging problem. This research brings together aspects from the remote sensing, geoinformatics, and machine learning disciplines by framing the global localization problem as a geospatial image registration problem in which overhead aerial and satellite imagery serve as a proxy for UAS imagery. A literature review is conducted covering the use of deep learning convolutional neural networks (DLCNN) with global localization and other related geospatial imagery applications. Differences between geospatial imagery taken from the overhead perspective and terrestrial imagery are discussed, as well as difficulties in using geospatial overhead imagery for image registration due to a lack of suitable machine learning datasets. Geospatial analysis is conducted to identify suitable areas for future UAS imagery collection. One of these areas, Jerusalem northeast (JNE) is selected as the area of interest (AOI) for this research. Multi-modal, multi-temporal, and multi-resolution geospatial overhead imagery is aggregated from a variety of publicly available sources and processed to create a controlled image dataset called Jerusalem northeast rural controlled imagery (JNE RCI). JNE RCI is tested with handcrafted feature-based methods SURF and SIFT and a non-handcrafted feature-based pre-trained fine-tuned VGG-16 DLCNN on coarse-grained image registration. Both handcrafted and non-handcrafted feature based methods had difficulty with the coarse-grained registration process. The format of JNE RCI is determined to be unsuitable for the coarse-grained registration process with DLCNNs and the process to create a new supervised machine learning dataset, Jerusalem northeast machine learning (JNE ML) is covered in detail. A multi-resolution grid based approach is used, where each grid cell ID is treated as the supervised training label for that respective resolution. Pre-trained fine-tuned VGG-16 DLCNNs, two custom architecture two-channel DLCNNs, and a custom chain DLCNN are trained on JNE ML for each spatial resolution of subimages in the dataset. All DLCNNs used could more accurately coarsely register the JNE ML subimages compared to the pre-trained fine-tuned VGG-16 DLCNN on JNE RCI. This shows the process for creating JNE ML is valid and is suitable for using machine learning with the coarse-grained registration problem. All custom architecture two-channel DLCNNs and the custom chain DLCNN were able to more accurately coarsely register the JNE ML subimages compared to the fine-tuned pre-trained VGG-16 approach. Both the two-channel custom DLCNNs and the chain DLCNN were able to generalize well to new imagery that these networks had not previously trained on. Through the contributions of this research, a foundation is laid for future work to be conducted on the UAS global localization problem within the rural forested JNE AOI

    VisIRNet: Deep Image Alignment for UAV-taken Visible and Infrared Image Pairs

    Full text link
    This paper proposes a deep learning based solution for multi-modal image alignment regarding UAV-taken images. Many recently proposed state-of-the-art alignment techniques rely on using Lucas-Kanade (LK) based solutions for a successful alignment. However, we show that we can achieve state of the art results without using LK-based methods. Our approach carefully utilizes a two-branch based convolutional neural network (CNN) based on feature embedding blocks. We propose two variants of our approach, where in the first variant (ModelA), we directly predict the new coordinates of only the four corners of the image to be aligned; and in the second one (ModelB), we predict the homography matrix directly. Applying alignment on the image corners forces algorithm to match only those four corners as opposed to computing and matching many (key)points, since the latter may cause many outliers, yielding less accurate alignment. We test our proposed approach on four aerial datasets and obtain state of the art results, when compared to the existing recent deep LK-based architectures
    • …
    corecore