936 research outputs found

    Beam pre-shaping methods using lenslet arrays for area-based high-resolution vehicle headlamp systems

    Get PDF
    High-resolution light distributions are lately in demand for vehicle headlamp systems as an innovative lighting approach. This lighting approach can realize functionalities, such as precise glare avoidance and on-road projection, which are useful for improving traffic comfort and safety. For achieving the required high-resolution light distribution, area-based projection technologies, such as DMD, LCD, and LCoS, are considered to be integrated into such headlamps. These projection devices demand rectangular illumination areas with specific light distributions to fulfill the requirements for illumination efficiency and performance in headlamp systems. Lenslet arrays, based on the principle of Kohler illumination, can effectively homogenize the light and shape it into rectangular shapes simultaneously. Such components are widely used in projection applications. However, they also show functional potentialities to be applied in high-resolution headlamps. This paper explains the design principles and methods of lenslet arrays for beam pre-shaping in headlamp systems. It validates the homogenization using a self-designed and manufactured lenslet array in a demonstrator in the first place. Afterward, this paper introduces two new methods for the centralized beam shaping required by some headlamps. These methods are validated by optical simulations

    Pupil wavefront manipulation for the compensation of mask topography effects in optical nanolithography

    Get PDF
    As semiconductor optical lithography is pushed to smaller dimensions, resolution enhancement techniques have been required to maintain process yields. For some time, the customization of illumination coherence at the source plane has allowed for the control of diffraction order distribution across the projection lens pupil. Phase shifting at the mask plane has allowed for some phase control as well. However, geometries smaller than the imaging wavelength introduce complex wavefront effects that cannot be corrected at source or mask planes. Three dimensional mask topography effects can cause a pitch dependent defocus (δBF), which can decrease the useable depth of focus (UDOF) across geometry of varying density. Wavefront manipulation at the lens pupil plane becomes necessary to provide the degrees of freedom needed to correct for such effects. The focus of this research is the compensation of such wavefront phase error realized through manipulation of the lens pupil plane, specifically in the form of spherical aberration. The research does not attempt to improve the process window for one particular feature, but rather improve the UDOF in order to make layouts with multiple pitches possible for advanced technology nodes. The research approach adopted in this dissertation includes rigorous simulation, analytical modeling, and experimental measurements. Due to the computational expense of rigorous calculations, a smart genetic algorithm is employed to optimize multiple spherical aberration coefficients. An analytical expression is formulated to predict the best focus shifts due to spherical aberration applied in the lens pupil domain. Rigorously simulated trends of best focus (BF) through pitch and orientation have been replicated by the analytical expression. Experimental validation of compensation using primary and secondary spherical aberration is performed using a high resolution wavefront manipulator. Subwavelength image exposures are performed on four different mask types and three different mask geometries. UDOF limiting δBF is observed on the thin masks for contact holes, and on thick masks for both one directional (1D) and two directional (2D) geometries. For the contact holes, the applied wavefront correction decreases the δBF from 44 nm to 7 nm and increases the UDOF to 109 nm, an 18% improvement. For the 1D geometries on a thick mask, the through pitch UDOF is increased from 59 nm to 108 nm, an 83% improvement. Experimental data also shows that an asymmetric wavefront can be tuned to particular geometries, providing a UDOF improvement for line ends under restricted processing conditions. The experimental data demonstrates that pupil wavefront manipulation has the capability to compensate for mask topography induced δBF. This dissertation recommends that corrective spherical aberration coefficients be used to decrease pitch dependent best focus, increase process yield, and ultimately expand the design domain over parameters such as mask materials and mask feature densities. The effect of spherical aberration applied in the pupil plane is to provide a wavefront solution that is equivalent to complex multiple-level mask compensation methods. This will allow the advantages of thicker masks to be explored for further applications in semiconductor optical lithography

    Submicron full- color LED pixels for microdisplays and micro- LED main displays

    Full text link
    We demonstrate a bottom- up approach to the construction of micro- LEDs as small as 150 nm in lateral dimension. Molecular beam epitaxy (MBE) is used to fabricate such nanostructured LEDs from InGaN, from the blue to red regions of the spectrum, providing a single material set useful for an entire RGB display.We demonstrate a bottom- up approach to the construction of micro- LEDs as small as 150 nm in lateral dimension. Molecular beam epitaxy (MBE) is used to fabricate such nanostructured LEDs from InGaN, from the blue to red regions of the spectrum, providing a single material set useful for an entire RGB display. We then consider collective effects of arrays of such LEDs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155468/1/jsid899_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155468/2/jsid899.pd

    New quantitative phase imaging modalities on standard microscope platforms

    Get PDF
    Three new reconstruction methods for quantitative phase imaging, including two interrelated two-dimensional methods, called multifilter phase imaging with partially coherent light and phase optical transfer function recovery, which lead to a third three-dimensional method, called tomographic deconvolution phase microscopy, were developed in response to a growing need among biomedical end users for solutions which can be integrated on standard microscope platforms. The performance of these new methods were evaluated using modelling and simulation as well as experimentation with known test cases. In addition to the development of new methods, existing methods for quantitative phase imaging were applied to characterize the effects of manufacturing, cleaving, and fusion splicing in large-mode-area erbium- and ytterbium-doped optical fibers.Ph.D

    Micro-optics for Opto-genetic Neuro-stimulation with Micro-LED Arrays

    Get PDF
    The breakthrough discovery of a nanoscale optically gated ion channel protein, Channelrhodopsin 2 (ChR2), in combination with a genetically expressed optically activated ion pump, Halorhodopsin, allowed the direct stimulation and inhibition of individual action potentials with light alone. This thesis describes the development of optics and micro-optics which when used with micro-led array sources, collects and projects light efficiently and uniformly onto such opto-genetically modified specimens. When used with enhanced light gated ion channels and pumps these systems allow us to further our understanding of both brain and visual systems. Micro-LED arrays permit spatio-temporal control of neuron stimulation on sub-millisecond timescales. However, micro-led arrays are disadvantaged by the broad-angular spread of their light emission and their low spatial fill factor. We present the design of macro and micro-optics systems for use with a micro-LED arrays consisting of a matrix of 25μm diameter micro-LEDs with 150 or 80μm centre-to-centre spacing. On one system, the micro-LED array is imaged onto off-the-shelf micro-optics using macro-optics and in the other system; micro-LED array and custom micro-optics are optimised and integrated together. The two systems are designed to improve the fill-factor from 2% to more than 78% by capturing a larger fraction of the LED emission and directing it correctly to the sample plane. This approach allows low fill factor arrays to be used effectively, which in turn has benefits in terms of thermal management and electrical drive from CMOS backplane electronics. These systems were implemented as an independent set that could be connected to a variety of different microscopes available for Patch-clamp and Multi-electrode measurements. As well, the feasibility of an eye prosthesis was tested using virtual reality optics and a fake eye to stimulate ganglion cells and by doing in-vivo stimulation of the genetically modified retina of a mouse.Open Acces

    Compact microscopy systems with non-conventional optical techniques

    Get PDF
    This work has been motivated by global efforts to decentralize high performance imaging systems through frugal engineering and expansion of 3D fabrication technologies. Typically, high resolution imaging systems are confined in clinical or laboratory environment due to the limited means of producing optical lenses on the demand. The use of lenses is an essential mean to achieve high resolution imaging, but conventional optical lenses are made using either polished glass or molded plastics. Both are suited for highly skilled craftsmen or factory level production. In the first part of this work, alternative low-cost lens-making process for generating high quality optical lenses with minimal operator training have been discussed. We evoked the use of liquid droplets to make lenses. This unconventional method relies on interfacial forces to generate curved droplets that if solidified can become convex-shaped lenses. To achieve this, we studied the droplet behaviour (Rayleigh-Plateau phenomenon) before creating a set of 3D printed tools to generate droplets. We measured and characterized the fabrication techniques to ensure reliability in lens fabrication on- demand at high throughput. Compact imaging requires a compact optical system and computing unit. So, in the next part of this work, we engineered a deconstructed microscope system for field-portable imaging. Still a core limitation of all optical lenses is the physical size of lens aperture – which limits their resolution performance, and optical aberrations – that limit their imaging quality performance. In the next part of this work, we investigated use of computational optics-based optimization approaches to conduct in situ characterization of aberrations that can be digitally removed. The computational approach we have used in this work is known as Fourier Ptychography (FP). It is an emerging computational microscopic technique that combines the use of synthetic aperture and iterative optimization algorithms, offering increased resolution, at full field-of-view (FOV) and aberration-removal. In using FP techniques, we have shown measurements of optical distortions from different lenses made from droplets only. We also, investigated the limitations of FP in aberration recovery on moldless lenses. In conclusion, this work presents new opportunities to engineer high resolution imaging system using modern 3D printing approaches. Our successful demonstration of FP techniques on moldless lenses will usher new additional applications in digital pathology or low-cost mobile health
    corecore