5,450 research outputs found

    Video Compressive Sensing for Dynamic MRI

    Full text link
    We present a video compressive sensing framework, termed kt-CSLDS, to accelerate the image acquisition process of dynamic magnetic resonance imaging (MRI). We are inspired by a state-of-the-art model for video compressive sensing that utilizes a linear dynamical system (LDS) to model the motion manifold. Given compressive measurements, the state sequence of an LDS can be first estimated using system identification techniques. We then reconstruct the observation matrix using a joint structured sparsity assumption. In particular, we minimize an objective function with a mixture of wavelet sparsity and joint sparsity within the observation matrix. We derive an efficient convex optimization algorithm through alternating direction method of multipliers (ADMM), and provide a theoretical guarantee for global convergence. We demonstrate the performance of our approach for video compressive sensing, in terms of reconstruction accuracy. We also investigate the impact of various sampling strategies. We apply this framework to accelerate the acquisition process of dynamic MRI and show it achieves the best reconstruction accuracy with the least computational time compared with existing algorithms in the literature.Comment: 30 pages, 9 figure

    How to find real-world applications for compressive sensing

    Full text link
    The potential of compressive sensing (CS) has spurred great interest in the research community and is a fast growing area of research. However, research translating CS theory into practical hardware and demonstrating clear and significant benefits with this hardware over current, conventional imaging techniques has been limited. This article helps researchers to find those niche applications where the CS approach provides substantial gain over conventional approaches by articulating lessons learned in finding one such application; sea skimming missile detection. As a proof of concept, it is demonstrated that a simplified CS missile detection architecture and algorithm provides comparable results to the conventional imaging approach but using a smaller FPA. The primary message is that all of the excitement surrounding CS is necessary and appropriate for encouraging our creativity but we all must also take off our "rose colored glasses" and critically judge our ideas, methods and results relative to conventional imaging approaches.Comment: 10 page

    Simultaneous real-time visible and infrared video with single-pixel detectors

    Get PDF
    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics
    • …
    corecore