610,892 research outputs found

    Characterizing interactions in online social networks during exceptional events

    Get PDF
    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events

    Signed Network Modeling Based on Structural Balance Theory

    Full text link
    The modeling of networks, specifically generative models, have been shown to provide a plethora of information about the underlying network structures, as well as many other benefits behind their construction. Recently there has been a considerable increase in interest for the better understanding and modeling of networks, but the vast majority of this work has been for unsigned networks. However, many networks can have positive and negative links(or signed networks), especially in online social media, and they inherently have properties not found in unsigned networks due to the added complexity. Specifically, the positive to negative link ratio and the distribution of signed triangles in the networks are properties that are unique to signed networks and would need to be explicitly modeled. This is because their underlying dynamics are not random, but controlled by social theories, such as Structural Balance Theory, which loosely states that users in social networks will prefer triadic relations that involve less tension. Therefore, we propose a model based on Structural Balance Theory and the unsigned Transitive Chung-Lu model for the modeling of signed networks. Our model introduces two parameters that are able to help maintain the positive link ratio and proportion of balanced triangles. Empirical experiments on three real-world signed networks demonstrate the importance of designing models specific to signed networks based on social theories to obtain better performance in maintaining signed network properties while generating synthetic networks.Comment: CIKM 2018: https://dl.acm.org/citation.cfm?id=327174

    Potential Networks, Contagious Communities, and Understanding Social Network Structure

    Full text link
    In this paper we study how the network of agents adopting a particular technology relates to the structure of the underlying network over which the technology adoption spreads. We develop a model and show that the network of agents adopting a particular technology may have characteristics that differ significantly from the social network of agents over which the technology spreads. For example, the network induced by a cascade may have a heavy-tailed degree distribution even if the original network does not. This provides evidence that online social networks created by technology adoption over an underlying social network may look fundamentally different from social networks and indicates that using data from many online social networks may mislead us if we try to use it to directly infer the structure of social networks. Our results provide an alternate explanation for certain properties repeatedly observed in data sets, for example: heavy-tailed degree distribution, network densification, shrinking diameter, and network community profile. These properties could be caused by a sort of `sampling bias' rather than by attributes of the underlying social structure. By generating networks using cascades over traditional network models that do not themselves contain these properties, we can nevertheless reliably produce networks that contain all these properties. An opportunity for interesting future research is developing new methods that correctly infer underlying network structure from data about a network that is generated via a cascade spread over the underlying network.Comment: To Appear in Proceedings of the 22nd International World Wide Web Conference(WWW 2013

    Storing data on RFID tags: A standards-based approach

    Get PDF
    Online social networks are gaining increasing economic importance in light of the rising number of members. The numerous recent acquisitions priced at enormous amounts illustrate this development. Therefore, the growing relevance of online social networks in science as well as in practise revealed the need for adequate valuation models, which take into account the networks’ specific characteristics. Thus, this article develops an economic model for valuation of online social networks. The model allows the evaluation of whether the purchase prices on the market, which recently amounted to millions, are justifiable. Finally, the practical application of the model is illustrated by an example of the major European online social network XING.com
    • …
    corecore