1,901 research outputs found

    Chain: A Dynamic Double Auction Framework for Matching Patient Agents

    Get PDF
    In this paper we present and evaluate a general framework for the design of truthful auctions for matching agents in a dynamic, two-sided market. A single commodity, such as a resource or a task, is bought and sold by multiple buyers and sellers that arrive and depart over time. Our algorithm, Chain, provides the first framework that allows a truthful dynamic double auction (DA) to be constructed from a truthful, single-period (i.e. static) double-auction rule. The pricing and matching method of the Chain construction is unique amongst dynamic-auction rules that adopt the same building block. We examine experimentally the allocative efficiency of Chain when instantiated on various single-period rules, including the canonical McAfee double-auction rule. For a baseline we also consider non-truthful double auctions populated with zero-intelligence plus"-style learning agents. Chain-based auctions perform well in comparison with other schemes, especially as arrival intensity falls and agent valuations become more volatile

    PS-TRUST: Provably Secure Solution for Truthful Double Spectrum Auctions

    Full text link
    Truthful spectrum auctions have been extensively studied in recent years. Truthfulness makes bidders bid their true valuations, simplifying greatly the analysis of auctions. However, revealing one's true valuation causes severe privacy disclosure to the auctioneer and other bidders. To make things worse, previous work on secure spectrum auctions does not provide adequate security. In this paper, based on TRUST, we propose PS-TRUST, a provably secure solution for truthful double spectrum auctions. Besides maintaining the properties of truthfulness and special spectrum reuse of TRUST, PS-TRUST achieves provable security against semi-honest adversaries in the sense of cryptography. Specifically, PS-TRUST reveals nothing about the bids to anyone in the auction, except the auction result. To the best of our knowledge, PS-TRUST is the first provably secure solution for spectrum auctions. Furthermore, experimental results show that the computation and communication overhead of PS-TRUST is modest, and its practical applications are feasible.Comment: 9 pages, 4 figures, submitted to Infocom 201

    Designing Coalition-Proof Reverse Auctions over Continuous Goods

    Full text link
    This paper investigates reverse auctions that involve continuous values of different types of goods, general nonconvex constraints, and second stage costs. We seek to design the payment rules and conditions under which coalitions of participants cannot influence the auction outcome in order to obtain higher collective utility. Under the incentive-compatible Vickrey-Clarke-Groves mechanism, we show that coalition-proof outcomes are achieved if the submitted bids are convex and the constraint sets are of a polymatroid-type. These conditions, however, do not capture the complexity of the general class of reverse auctions under consideration. By relaxing the property of incentive-compatibility, we investigate further payment rules that are coalition-proof without any extra conditions on the submitted bids and the constraint sets. Since calculating the payments directly for these mechanisms is computationally difficult for auctions involving many participants, we present two computationally efficient methods. Our results are verified with several case studies based on electricity market data

    FlexAuc: Serving Dynamic Demands in a Spectrum Trading Market with Flexible Auction

    Full text link
    In secondary spectrum trading markets, auctions are widely used by spectrum holders (SHs) to redistribute their unused channels to secondary wireless service providers (WSPs). As sellers, the SHs design proper auction schemes to stimulate more participants and maximize the revenue from the auction. As buyers, the WSPs determine the bidding strategies in the auction to better serve their end users. In this paper, we consider a three-layered spectrum trading market consisting of the SH, the WSPs and the end users. We jointly study the strategies of the three parties. The SH determines the auction scheme and spectrum supplies to optimize its revenue. The WSPs have flexible bidding strategies in terms of both demands and valuations considering the strategies of the end users. We design FlexAuc, a novel auction mechanism for this market to enable dynamic supplies and demands in the auction. We prove theoretically that FlexAuc not only maximizes the social welfare but also preserves other nice properties such as truthfulness and computational tractability.Comment: 11 pages, 7 figures, Preliminary version accepted in INFOCOM 201

    Double Auctions in Markets for Multiple Kinds of Goods

    Full text link
    Motivated by applications such as stock exchanges and spectrum auctions, there is a growing interest in mechanisms for arranging trade in two-sided markets. Existing mechanisms are either not truthful, or do not guarantee an asymptotically-optimal gain-from-trade, or rely on a prior on the traders' valuations, or operate in limited settings such as a single kind of good. We extend the random market-halving technique used in earlier works to markets with multiple kinds of goods, where traders have gross-substitute valuations. We present MIDA: a Multi Item-kind Double-Auction mechanism. It is prior-free, truthful, strongly-budget-balanced, and guarantees near-optimal gain from trade when market sizes of all goods grow to ∞\infty at a similar rate.Comment: Full version of IJCAI-18 paper, with 2 figures. Previous names: "MIDA: A Multi Item-type Double-Auction Mechanism", "A Random-Sampling Double-Auction Mechanism". 10 page
    • …
    corecore