4 research outputs found

    Joint Stiffness Identification and Flexibility Compensation of Articulated Industrial Robot

    Full text link

    Étalonnage de robots industriels à l'aide d'un système portable de photogrammétrie

    Get PDF
    Le présent travail a pour objectif de valider la pertinence de l’utilisation d’un appareil de photogrammétrie portable dans le domaine de l’étalonnage de robots industriels. L’appareil à l’étude est le système MaxSHOT 3D de Creaform. L’étalonnage est un procédé permettant l’identification d’un modèle géométrique ou non géométrique. Celui-ci permet d’améliorer le contrôle d’un robot afin d’augmenter sa précision de positionnement. Ce mémoire présente le processus d’étalonnage non géométrique d’un robot de petite taille, le LR Mate 200iC de la compagnie FANUC. À des fins de comparaison, la procédure d’étalonnage est adaptée pour considérer un deuxième appareil de mesures 3D, soit le Laser Tracker ION de la compagnie FARO. Ce dernier est aussi utilisé pour construire une banque de validation d’environ 1000 configurations. Les efforts sont d’abord dirigés vers la modélisation du robot à l’étude. Des modèles cinématiques direct et inverse sont présentés respectant le standard de Denavit-Hartenberg modifié (DHM). L’algorithme de Newton-Euler est utilisé pour ajouter une considération non géométrique qui estime les articulations telles des ressorts de torsion. Dans un volet subséquent, l’appareil de photogrammétrie portable et le laser de poursuite sont présentés. Les fonctionnements de ces deux systèmes diamétralement opposés à plusieurs niveaux sont comparés. En effet, le système de photogrammétrie portable est abordable (environ 27 000 CA),simpled’utilisationetpermetl’observationd’unesceˋne.Parcontre,ilneˊcessitequelesobjetsaˋmesurersoientimmobiles,requiertungrandnombredemanipulationsetn’estpasautonome.Encontrepartie,lelaserdepoursuitepermetdemesurerdestrajectoiresencontinuetpermetl’automatisationduprocessusd’acquisition.Neˊanmoins,l’appareilesttreˋsdispendieux(100000 CA), simple d’utilisation et permet l’observation d’une scène. Par contre, il nécessite que les objets à mesurer soient immobiles, requiert un grand nombre de manipulations et n’est pas autonome. En contrepartie, le laser de poursuite permet de mesurer des trajectoires en continu et permet l’automatisation du processus d’acquisition. Néanmoins, l’appareil est très dispendieux (100 000 CA et plus), ne permet la mesure que d’un seul point à la fois et est sensible aux conditions de l’environnement (température, vibrations, courants d’air, etc.). En prenant compte des contraintes des deux appareils, un algorithme générant des configurations partiellement aléatoires est utilisé pour préparer un bassin de 1000 configurations du robot. L’algorithme s’assure que l’orientation de l’effecteur permet l’acquisition de données par les deux appareils de mesure pour chaque configuration proposée. Dans la phase suivante, une sélection par indice d’observabilité est utilisée afin de déterminer les meilleures configurations à utiliser pour l’identification des paramètres du robot. Le nombre de configurations sélectionnées est de 34, laissant les 966 autres configurations disponibles pour la phase de validation. Le dernier volet du mémoire présente la procédure d’identification de paramètres du robot par la méthode des moindres carrés. Les modèles identifiés sont présentés et leurs performances sont validées. Lorsque les données acquises à partir du MaxSHOT 3D sont utilisées, la précision de positionnement obtenue est de 0.469 mm, tandis qu’elle est de 0.365 mm en utilisant les données du Laser Tracker ION. Néanmoins, comme les mesures utilisées en validation sont issues du laser de poursuite, un biais favorise ce dernier. Pour cette raison et la proximité qui existe entre la précision obtenue avec les deux appareils, il est conclu que relativement à la précision absolue, les deux appareils sont similaires. Il est toutefois suggéré de prendre en compte toutes les autres caractéristiques de chaque appareil, car leur intégration possède des défis bien différents

    Contribution à l’amélioration de la précision absolue des robots parallèles

    Get PDF
    Le but de la présente étude est de contribuer à l’amélioration de la précision absolue des robots parallèles, en ayant recours aux méthodes d’étalonnage géométrique. Ces méthodes consistent à identifier les valeurs des paramètres géométriques du robot, en vue d’améliorer la correspondance entre le robot réel et le modèle mathématique utilisé par son contrôleur. En plus de la compensation des erreurs géométriques, les opérations d’étalonnage proposées permettent d’identifier précisément le référentiel de base de chaque robot étudié. Les méthodes développées sont appliquées à deux robots parallèles à moins de six degrés de liberté (ddl) : une table de positionnement précis à trois ddl (PreXYT) et un robot plan cinqbarres (DexTAR) à deux ddl. Pour le premier robot, l’étalonnage est effectué en utilisant d’abord une méthode d’identification directe. Le deuxième travail destinée à améliorer la précision absolue du PreXYT résulte de la méthode géométrique directe d’étalonnage. En ce qui concerne le robot DexTAR, sa précision est améliorée en utilisant une approche d’autoétalonnage qui exploite les modes de fonctionnement et les modes d’assemblage, pour réduire le nombre de positions d’étalonnage. Cette approche est particulièrement intéressante pour sa simplicité : à chaque position d’étalonnage une sphère de précision est installée en permanence pour servir de cible de mesure. Les positions de ces billes, placées sur une plateforme amovible, n’est mesurée qu’une seule fois, en utilisant une machine de mesure tridimensionnel (MMT). Après la réinstallation de la plateforme sur la base du robot, l’étalonnage peut se faire n’importe quand en n’utilisant que les informations provenant des encodeurs des actionneurs. Les données d’étalonnage et de validation des résultats sont récoltées en utilisant deux appareils mesurant par palpage. Le premier appareil est un bras articulé de mesure de coordonnées, de la compagnie FARO Technologies ; le second est une MMT de la compagnie Mitutoyo. Les incertitudes de mesures de ces machines sont respectivement ±18 μm et ±2,7 μm (niveau de confiance de 95%). Sachant que la qualité de l’étalonnage est inversement proportionnelle aux incertitudes de mesures, l’utilisation d’instruments précis avec des modèles géométriques d’étalonnage quasi-complet nous a permis d’atteindre ces résultats : les erreurs maximales en position et en orientation ont été réduites respectivement à 0,044 mm et 0,009° pour le PreXYT, à l’intérieur d’un cercle de 170 mm de diamètre. Pour le robot DexTAR, l’erreur maximale de position a été réduite à 0,080 mm dans l’ensemble de son espace de travail, soit une zone d’environ 600 mm × 600 mm. Améliorer la précision des robots au-delà de ces valeurs, en utilisant juste les approches géométriques, pourrait s’avérer peu probable. En ce sens, l’ajout de la modélisation et la compensation des erreurs non géométriques serait utile pour obtenir des résultats meilleurs

    Calibration of high-precision flexure parallel robots

    Get PDF
    Over the last decades, calibration techniques have been widely used in robotics since they represent a cost-effective solution for improving the accuracy of robots and machine-tools. They only involve software modification without the necessity of revising the robot design or tightening the manufacturing tolerances. The goal of this thesis is to propose a procedure that guides the engineer through the calibration of a given multi-DOF flexure parallel robot within sub-µm accuracy. Two robots having 3 and 6 degrees of freedom have been considered as a case-study throughout the work. As in any calibration procedure, the work has been conducted on three different fronts: measurement, data processing and validation. The originality of this thesis in respect to published material lies in these three points. Measurements were carried out in a chamber inside which the measuring environment was protected against mechanical and thermal perturbations. In particular, the temperature variations experienced by the different parts of the measuring loop during a typical measurement session were stabilized within less than ± 0.1 °C. Proposed procedures allow the collection of reliable sets of data on the two robots. Delicate aspects of practical implementation are discussed. In particular, the problem of collecting a complete set of 6D data within accuracies in the nanometre range, for which there is still a lack of standard equipment, is solved using a procedure comprising several steps and making use of existing instrumentation. Suggestions for future investigations are given, regarding either long-term research problems or short-term industrial implementation issues. Data processing was performed using two different techniques in order to reach absolute accuracies after calibration better than ± 100 nm for translations and ± 3 arcsec for rotations (± 0.3 arcsec inside a more restricted range of ± 0.11°). The first method is called the "model-based approach" and requires the use of a known analytical relationship between the motor and operational coordinates of the robot. This relationship involves a certain number of parameters that can be related to the geometry of the robot (physical models) or simply mathematical coefficients of an approximating mathematical function (behavioural models). In the case of high-precision multi-DOF flexure parallel robots, we show that polynomial-based behavioural models are preferable to physical models in terms of accuracy for data processing tasks. In the second method, called the "model-free approach", the user does not need to model explicitly the main error sources (or their effect) affecting the robot accuracy. A model-free approach has been implemented using Artificial Neural Networks. We show that, using a heuristic search based on a decision-tree, the architecture of a network with satisfactory prediction capability can be found systematically. In particular, this algorithm can find a network able to predict the direct correspondence between the motor and operational coordinates (within the desired accuracy) without the help of the Inverse Geometric Model of the robot, i.e. even if the nominal geometry of the robot being calibrated remains unknown. This result contradicts conclusions reported by previous researchers. It is claimed that any robot (not necessarily a high-precision flexure parallel mechanism) can be calibrated by means of a "neural approach" in which the architecture of an appropriate network is determined with the help of our algorithm. Two examples (other than the robots measured in this thesis) are given to illustrate this universality. In the last part of this work, we provide a feasibility study on the use of indentation, a technique traditionally used for material testing, as a validation procedure to assess the accuracy of the calibrated degrees of freedom. The industrial interest of this technique lies in the fact that the robot is asked to execute similar motions to those involved in a real micro-machining operation
    corecore