6,226 research outputs found

    The Design and Implementation of a Bayesian CAD Modeler for Robotic Applications

    Get PDF
    We present a Bayesian CAD modeler for robotic applications. We address the problem of taking into account the propagation of geometric uncertainties when solving inverse geometric problems. The proposed method may be seen as a generalization of constraint-based approaches in which we explicitly model geometric uncertainties. Using our methodology, a geometric constraint is expressed as a probability distribution on the system parameters and the sensor measurements, instead of a simple equality or inequality. To solve geometric problems in this framework, we propose an original resolution method able to adapt to problem complexity. Using two examples, we show how to apply our approach by providing simulation results using our modeler

    Probabilistic Methodology and Techniques for Artefact Conception and Development

    Get PDF
    The purpose of this paper is to make a state of the art on probabilistic methodology and techniques for artefact conception and development. It is the 8th deliverable of the BIBA (Bayesian Inspired Brain and Artefacts) project. We first present the incompletness problem as the central difficulty that both living creatures and artefacts have to face: how can they perceive, infer, decide and act efficiently with incomplete and uncertain knowledge?. We then introduce a generic probabilistic formalism called Bayesian Programming. This formalism is then used to review the main probabilistic methodology and techniques. This review is organized in 3 parts: first the probabilistic models from Bayesian networks to Kalman filters and from sensor fusion to CAD systems, second the inference techniques and finally the learning and model acquisition and comparison methodologies. We conclude with the perspectives of the BIBA project as they rise from this state of the art

    A robust MPC/ISM hierarchical multi-loop control scheme for robot manipulators

    Get PDF
    In this paper, we propose a robust hierarchical multi-loop control scheme aimed at solving motion control problems for robot manipulators. The kernel of the proposed control scheme is the inverse dynamics-based feedback linearized robotic MIMO system. A first loop is closed relying on an Integral Sliding Mode (ISM) controller, so that matched disturbances and uncertain terms due to unmodelled dynamics, which are not rejected by the inverse dynamics approach, are suitably compensated. An external loop based on Model Predictive Control (MPC) optimizes the evolution of the controlled system in the respect of state and input constraints. The motivation for using ISM, apart from its property of providing robustness to the scheme in front of a significant class of uncertainties, is also given by its capability of enforcing sliding modes of the controlled system since the initial time instant, which is a clear advantage in the considered case, allowing one to solve the model predictive control optimization problem relying on a set of linearized decoupled SISO systems which are not affected by uncertain terms. As a consequence, a standard MPC can be used and the resulting control scheme is characterized by a low computational load with respect to conventional nonlinear robust solutions. The verification and the validation of our proposal have been carried out with satisfactory results in simulation, relying on a model of an industrial robot manipulator with injected noise, to better emulate a realistic set up. Both the model and the noise have been identified on the basis of real data. ©2013 IEEE

    Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

    Full text link
    Trial-and-error based reinforcement learning (RL) has seen rapid advancements in recent times, especially with the advent of deep neural networks. However, the majority of autonomous RL algorithms require a large number of interactions with the environment. A large number of interactions may be impractical in many real-world applications, such as robotics, and many practical systems have to obey limitations in the form of state space or control constraints. To reduce the number of system interactions while simultaneously handling constraints, we propose a model-based RL framework based on probabilistic Model Predictive Control (MPC). In particular, we propose to learn a probabilistic transition model using Gaussian Processes (GPs) to incorporate model uncertainty into long-term predictions, thereby, reducing the impact of model errors. We then use MPC to find a control sequence that minimises the expected long-term cost. We provide theoretical guarantees for first-order optimality in the GP-based transition models with deterministic approximate inference for long-term planning. We demonstrate that our approach does not only achieve state-of-the-art data efficiency, but also is a principled way for RL in constrained environments.Comment: Accepted at AISTATS 2018
    corecore