443 research outputs found

    Adapting Prosody in a Text-to-Speech System

    Get PDF

    Modeling of Polish Intonation for Statistical-Parametric Speech Synthesis

    Get PDF
    Wydział NeofilologiiBieżąca praca prezentuje próbę budowy neurobiologicznie umotywowanego modelu mapowań pomiędzy wysokopoziomowymi dyskretnymi kategoriami lingwistycznymi a ciągłym sygnałem częstotliwości podstawowej w polskiej neutralnej mowie czytanej, w oparciu o konwolucyjne sieci neuronowe. Po krótkim wprowadzeniu w problem badawczy w kontekście intonacji, syntezy mowy oraz luki pomiędzy fonetyką a fonologią, praca przedstawia opis uczenia modelu na podstawie specjalnego korpusu mowy oraz ewaluację naturalności konturu F0 generowanego przez wyuczony model za pomocą eksperymentów percepcyjnych typu ABX oraz MOS przy użyciu specjalnie w tym celu zbudowanego resyntezatora Neural Source Filter. Następnie, prezentowane są wyniki eksploracji fonologiczno-fonetycznych mapowań wyuczonych przez model. W tym celu wykorzystana została jedna z tzw. metod wyjaśniających dla sztucznej inteligencji – Layer-wise Relevance Propagation. W pracy przedstawione zostały wyniki powstałej na tej podstawie obszernej analizy ilościowej istotności dla konturu częstotliwości podstawowej każdej z 1297 specjalnie wygenerowanych lingwistycznych kategorii wejściowych modelu oraz ich wielorakich grupowań na różnorodnych poziomach abstrakcji. Pracę kończy dogłębna analiza oraz interpretacja uzyskanych wyników oraz rozważania na temat mocnych oraz słabych stron zastosowanych metod, a także lista proponowanych usprawnień.This work presents an attempt to build a neurobiologically inspired Convolutional Neural Network-based model of the mappings between discrete high-level linguistic categories into a continuous signal of fundamental frequency in Polish neutral read speech. After a brief introduction of the current research problem in the context of intonation, speech synthesis and the phonetic-phonology gap, the work goes on to describe the training of the model on a special speech corpus, and an evaluation of the naturalness of the F0 contour produced by the trained model through ABX and MOS perception experiments conducted with help of a specially built Neural Source Filter resynthesizer. Finally, an in-depth exploration of the phonology-to-phonetics mappings learned by the model is presented; the Layer-wise Relevance Propagation explainability method was used to perform an extensive quantitative analysis of the relevance of 1297 specially engineered linguistic input features and their groupings at various levels of abstraction for the specific contours of the fundamental frequency. The work ends with an in-depth interpretation of these results and a discussion of the advantages and disadvantages of the current method, and lists a number of potential future improvements.Badania przedstawione w pracy zostały cz˛e´sciowo zrealizowane w ramach grantu badawczego Harmonia nr UMO-2014/14/M/HS2/00631 przyznanego przez Narodowe Centrum Nauki

    Compositional Distributional Semantics with Compact Closed Categories and Frobenius Algebras

    Full text link
    This thesis contributes to ongoing research related to the categorical compositional model for natural language of Coecke, Sadrzadeh and Clark in three ways: Firstly, I propose a concrete instantiation of the abstract framework based on Frobenius algebras (joint work with Sadrzadeh). The theory improves shortcomings of previous proposals, extends the coverage of the language, and is supported by experimental work that improves existing results. The proposed framework describes a new class of compositional models that find intuitive interpretations for a number of linguistic phenomena. Secondly, I propose and evaluate in practice a new compositional methodology which explicitly deals with the different levels of lexical ambiguity (joint work with Pulman). A concrete algorithm is presented, based on the separation of vector disambiguation from composition in an explicit prior step. Extensive experimental work shows that the proposed methodology indeed results in more accurate composite representations for the framework of Coecke et al. in particular and every other class of compositional models in general. As a last contribution, I formalize the explicit treatment of lexical ambiguity in the context of the categorical framework by resorting to categorical quantum mechanics (joint work with Coecke). In the proposed extension, the concept of a distributional vector is replaced with that of a density matrix, which compactly represents a probability distribution over the potential different meanings of the specific word. Composition takes the form of quantum measurements, leading to interesting analogies between quantum physics and linguistics.Comment: Ph.D. Dissertation, University of Oxfor

    The central contribution of prosody to sentence processing: Evidence from behavioural and neuroimaging studies

    Get PDF

    Fundamental frequency modelling: an articulatory perspective with target approximation and deep learning

    Get PDF
    Current statistical parametric speech synthesis (SPSS) approaches typically aim at state/frame-level acoustic modelling, which leads to a problem of frame-by-frame independence. Besides that, whichever learning technique is used, hidden Markov model (HMM), deep neural network (DNN) or recurrent neural network (RNN), the fundamental idea is to set up a direct mapping from linguistic to acoustic features. Although progress is frequently reported, this idea is questionable in terms of biological plausibility. This thesis aims at addressing the above issues by integrating dynamic mechanisms of human speech production as a core component of F0 generation and thus developing a more human-like F0 modelling paradigm. By introducing an articulatory F0 generation model – target approximation (TA) – between text and speech that controls syllable-synchronised F0 generation, contextual F0 variations are processed in two separate yet integrated stages: linguistic to motor, and motor to acoustic. With the goal of demonstrating that human speech movement can be considered as a dynamic process of target approximation and that the TA model is a valid F0 generation model to be used at the motor-to-acoustic stage, a TA-based pitch control experiment is conducted first to simulate the subtle human behaviour of online compensation for pitch-shifted auditory feedback. Then, the TA parameters are collectively controlled by linguistic features via a deep or recurrent neural network (DNN/RNN) at the linguistic-to-motor stage. We trained the systems on a Mandarin Chinese dataset consisting of both statements and questions. The TA-based systems generally outperformed the baseline systems in both objective and subjective evaluations. Furthermore, the amount of required linguistic features were reduced first to syllable level only (with DNN) and then with all positional information removed (with RNN). Fewer linguistic features as input with limited number of TA parameters as output led to less training data and lower model complexity, which in turn led to more efficient training and faster synthesis

    Modelling prosodic and dialogue information for automatic speech recognition

    Get PDF

    Synthesising prosody with insufficient context

    Get PDF
    Prosody is a key component in human spoken communication, signalling emotion, attitude, information structure, intention, and other communicative functions through perceived variation in intonation, loudness, timing, and voice quality. However, the prosody in text-to-speech (TTS) systems is often monotonous and adds no additional meaning to the text. Synthesising prosody is difficult for several reasons: I focus on three challenges. First, prosody is embedded in the speech signal, making it hard to model with machine learning. Second, there is no clear orthography for prosody, meaning it is underspecified in the input text and making it difficult to directly control. Third, and most importantly, prosody is determined by the context of a speech act, which TTS systems do not, and will never, have complete access to. Without the context, we cannot say if prosody is appropriate or inappropriate. Context is wide ranging, but state-of-the-art TTS acoustic models only have access to phonetic information and limited structural information. Unfortunately, most context is either difficult, expensive, or impos- sible to collect. Thus, fully specified prosodic context will never exist. Given there is insufficient context, prosody synthesis is a one-to-many generative task: it necessitates the ability to produce multiple renditions. To provide this ability, I propose methods for prosody control in TTS, using either explicit prosody features, such as F0 and duration, or learnt prosody representations disentangled from the acoustics. I demonstrate that without control of the prosodic variability in speech, TTS will produce average prosody—i.e. flat and monotonous prosody. This thesis explores different options for operating these control mechanisms. Random sampling of a learnt distribution of prosody produces more varied and realistic prosody. Alternatively, a human-in-the-loop can operate the control mechanism—using their intuition to choose appropriate prosody. To improve the effectiveness of human-driven control, I design two novel approaches to make control mechanisms more human interpretable. Finally, it is important to take advantage of additional context as it becomes available. I present a novel framework that can incorporate arbitrary additional context, and demonstrate my state-of- the-art context-aware model of prosody using a pre-trained and fine-tuned language model. This thesis demonstrates empirically that appropriate prosody can be synthesised with insufficient context by accounting for unexplained prosodic variation
    corecore