2 research outputs found

    New Formulations for Dynamic Behavior of Sand-Waste Tire Mixtures in a Small Range of Strain Amplitudes

    Get PDF
    This paper describes the results of a series of cyclic triaxial tests on sand - waste tire mixtures, and applications of genetic programming (GP) and stepwise regression (SR) for the prediction of damping ratio and shear modulus of the mixtures tested. In the tests, shear modulus, and damping ratio of the geomaterials were measured for a strain range of 0.0001% up to 0.04%. The input variables in the developed GP and SR models are the waste tire content (0%, 10%, 20%, and 30%), waste tire type (tire crumbs or tire buffings), strain, and confining pressures (40 kPa, 100 kPa, and 200 kPa), and outputs are shear modulus and damping ratio. Test results show that the shear modulus and the damping ratio of the mixtures are strongly influenced by the waste tire inclusions. The performance of the proposed GP models (R2 = 0.95 for shear modulus, and R2 = 0.94 for damping ratio) are observed to be more accurate than that of the SR models (R2 = 0.87 for shear modulus, and R2 = 0.91 for damping ratio)

    Effect of Loading Frequency on Dynamic Properties of Soils Using Resonant Column

    Get PDF
    Dynamic properties of soils (shear stiffness and damping ratio) are critical for the design of structures subjected to vibrations. The dynamic properties of a benchmark standardized laboratory sand (Ottawa silica sand) were evaluated with two different resonant column devices, utilising software with different analytical approaches for the evaluation of soil properties. The dynamic properties (shear modulus and damping ratio) are evaluated as a function of the shear strain level. The results are compared to evaluate the effect of the type of equipment and the form of the data analysis on the measured dynamic properties of the samples. The results are discussed in light of the applicability of the procedures in practice, the ease of the testing methods, and the errors they introduced into analysis and design. In general, the shear wave velocities obtained from the two different devices are in good agreement. However, the damping ratios they give show considerable differences as strains increase. Dynamic properties are typically measured by curve fitting of the transfer function between the excitation and the response using the resonant column device. However, the force function generated by sinusoidal sweep or random noise excitations induce different shear strain levels at different frequencies. Consequently, the shape of the measured transfer function is distorted and differs from the theoretical transfer function for an equivalent single-degree-of-freedom system. The difference between the measured and theoretical transfer functions as well as the bias in the computed dynamic properties becomes more pronounced with the increase in shear strain. This study presents a new methodology for the evaluation of dynamic properties from an equivalent constant-strain transfer function. The soil specimen is excited simultaneously using a sinusoidal excitation (carrier signal) at the required strain level and a small amplitude, narrow band random noise. The strain level induced by the fixed sine is shown to control the resonant frequency of the specimen; whereas the random noise introduces the required frequency bandwidth to determine the transfer function and hence the dynamic properties at a constant strain level. The new methodology also shows a good potential for the evaluation of frequency effects on the dynamic properties of soils in resonant column testing
    corecore