4 research outputs found

    Toward Adaptive Trust Calibration for Level 2 Driving Automation

    Full text link
    Properly calibrated human trust is essential for successful interaction between humans and automation. However, while human trust calibration can be improved by increased automation transparency, too much transparency can overwhelm human workload. To address this tradeoff, we present a probabilistic framework using a partially observable Markov decision process (POMDP) for modeling the coupled trust-workload dynamics of human behavior in an action-automation context. We specifically consider hands-off Level 2 driving automation in a city environment involving multiple intersections where the human chooses whether or not to rely on the automation. We consider automation reliability, automation transparency, and scene complexity, along with human reliance and eye-gaze behavior, to model the dynamics of human trust and workload. We demonstrate that our model framework can appropriately vary automation transparency based on real-time human trust and workload belief estimates to achieve trust calibration.Comment: 10 pages, 8 figure

    Human Trust-based Feedback Control: Dynamically varying automation transparency to optimize human-machine interactions

    Full text link
    Human trust in automation plays an essential role in interactions between humans and automation. While a lack of trust can lead to a human's disuse of automation, over-trust can result in a human trusting a faulty autonomous system which could have negative consequences for the human. Therefore, human trust should be calibrated to optimize human-machine interactions with respect to context-specific performance objectives. In this article, we present a probabilistic framework to model and calibrate a human's trust and workload dynamics during his/her interaction with an intelligent decision-aid system. This calibration is achieved by varying the automation's transparency---the amount and utility of information provided to the human. The parameterization of the model is conducted using behavioral data collected through human-subject experiments, and three feedback control policies are experimentally validated and compared against a non-adaptive decision-aid system. The results show that human-automation team performance can be optimized when the transparency is dynamically updated based on the proposed control policy. This framework is a first step toward widespread design and implementation of real-time adaptive automation for use in human-machine interactions.Comment: 21 page

    Modelling biased human trust dynamics

    No full text
    corecore