61 research outputs found

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    Algorithmes et architectures pour la commande et le diagnostic de systèmes critiques de vol

    Get PDF
    Flight-Critical Systems such as Electromechanical Actuators driven by Engine Control Units (ECU) or Flight Control Units (FCU) are designed and developed regarding drastic safety requirements. In this study, an actuator control and monitoring ECU architecture based on analytic redundancy is proposed. In case of fault occurrences, material redundancies in avionic equipment allow certaincritical systems to reconfigure or to switch into a safe mode. However, material redundancies increase aircraft equipment size, weight and power (SWaP). Monitoring based on dynamical models is an interesting way to further enhance safetyand availability without increasing the number of redundant items. Model-base dfault detection and isolation (FDI) methods [58, 26, 47] such as observers and parity space are recalled in this study. The properties of differential flatness for nonlinear systems [80, 41, 73] and endogenous feedback linearisation are used with nonlinear diagnosis models. Linear and nonlinear observers are then compared with an application on hybrid stepper motor (HSM). A testing bench was specially designed to observe in real-time the behaviour of the diagnosis models when faults occur on the stator windings of a HSM.Les systèmes critiques de vol tels que les actionneurs électromécaniques ainsi que les calculateurs de commande moteur (ECU) et de vol (FCU),sont conçus en tenant compte des contraintes aéronautiques sévères de sureté defonctionnement. Dans le cadre de cette étude, une architecture calculateur pourla commande et la surveillance d’actionneurs moteur et de surfaces de vol est proposée et à fait l’objet d’un brevet [13]. Pour garantir ces mesure de sureté, les ECU et FCU présentent des redondances matérielles multiples, mais engendrent une augmentation de l’encombrement, du poids et de l’énergie consommée. Pour ces raisons, les redondances à base de modèles dynamiques, présentent un atout majeur pour les calculateurs car elles permettent dans certains cas de maintenir les exigences d’intégrité et de disponibilité tout en réduisant le nombre de capteurs ou d’actionneurs. Un rappel sur les méthodes de diagnostic par générateurs de résidus et estimateurs d’états [58, 26, 47] est effectué dans cette étude. Les propriétés de platitude différentielle et la linéarisation par difféomorphisme et bouclage endogène [80, 41, 73] permettent d’utiliser des modèles linéaires équivalents avec les générateurs de résidus. Un banc d’essai a été conçu afin de valider les performances des algorithmes de diagnostic

    Sensor failure detection system

    Get PDF
    Advanced concepts for detecting, isolating, and accommodating sensor failures were studied to determine their applicability to the gas turbine control problem. Five concepts were formulated based upon such techniques as Kalman filters and a screening process led to the selection of one advanced concept for further evaluation. The selected advanced concept uses a Kalman filter to generate residuals, a weighted sum square residuals technique to detect soft failures, likelihood ratio testing of a bank of Kalman filters for isolation, and reconfiguring of the normal mode Kalman filter by eliminating the failed input to accommodate the failure. The advanced concept was compared to a baseline parameter synthesis technique. The advanced concept was shown to be a viable concept for detecting, isolating, and accommodating sensor failures for the gas turbine applications

    Measurement of fault latency in a digital avionic miniprocessor

    Get PDF
    The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are presented. The failure detection coverage of comparison-monitoring and a typical avionics CPU self-test program was determined. The specific tasks and experiments included: (1) inject randomly selected gate-level and pin-level faults and emulate six software programs using comparison-monitoring to detect the faults; (2) based upon the derived empirical data develop and validate a model of fault latency that will forecast a software program's detecting ability; (3) given a typical avionics self-test program, inject randomly selected faults at both the gate-level and pin-level and determine the proportion of faults detected; (4) determine why faults were undetected; (5) recommend how the emulation can be extended to multiprocessor systems such as SIFT; and (6) determine the proportion of faults detected by a uniprocessor BIT (built-in-test) irrespective of self-test

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Aeronautical Engineering: A continuing bibliography, supplement 116

    Get PDF
    This bibliography lists 550 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1979

    Observer based active fault tolerant control of descriptor systems

    Get PDF
    The active fault tolerant control (AFTC) uses the information provided by fault detection and fault diagnosis (FDD) or fault estimation (FE) systems offering an opportunity to improve the safety, reliability and survivability for complex modern systems. However, in the majority of the literature the roles of FDD/FE and reconfigurable control are described as separate design issues often using a standard state space (i.e. non-descriptor) system model approach. These separate FDD/FE and reconfigurable control designs may not achieve desired stability and robustness performance when combined within a closed-loop system.This work describes a new approach to the integration of FE and fault compensation as a form of AFTC within the context of a descriptor system rather than standard state space system. The proposed descriptor system approach has an integrated controller and observer design strategy offering better design flexibility compared with the equivalent approach using a standard state space system. An extended state observer (ESO) is developed to achieve state and fault estimation based on a joint linear matrix inequality (LMI) approach to pole-placement and H∞ optimization to minimize the effects of bounded exogenous disturbance and modelling uncertainty. A novel proportional derivative (PD)-ESO is introduced to achieve enhanced estimation performance, making use of the additional derivative gain. The proposed approaches are evaluated using a common numerical example adapted from the recent literature and the simulation results demonstrate clearly the feasibility and power of the integrated estimation and control AFTC strategy. The proposed AFTC design strategy is extended to an LPV descriptor system framework as a way of dealing with the robustness and stability of the system with bounded parameter variations arising from the non-linear system, where a numerical example demonstrates the feasibility of the use of the PD-ESO for FE and compensation integrated within the AFTC system.A non-linear offshore wind turbine benchmark system is studied as an application of the proposed design strategy. The proposed AFTC scheme uses the existing industry standard wind turbine generator angular speed reference control system as a “baseline” control within the AFTC scheme. The simulation results demonstrate the added value of the new AFTC system in terms of good fault tolerance properties, compared with the existing baseline system

    Aeronautical engineering: A continuing bibliography with indexes (supplement 216)

    Get PDF
    This bibliography lists 505 reports, articles and other documents introduced into the NASA scientific and technical information system in July, 1987

    Fault tolerant drives for safety critical applications

    Get PDF
    PhD ThesisThe correct operation of adjustable speed drives, which form part of a larger system, is often essential to the operation of the system as a whole. In certain applications the failure of such a drive could result in a threat to human safety and these applications are termed 'safety critical'. The chance of a component failure resulting in non-operation of the drive can be dramatically reduced by adopting a fault tolerant design. A fault tolerant drive must continue to operate throughout the occurrence of any single point failure without undue disturbance to the power output. Thereafter the drive must be capable of producing rated output indefinitely in the presence of the fault. The work presented in this thesis shows that fault tolerance can be achieved without severe penalties in terms of cost or power to mass ratio. The design of a novel permanent magnet drive is presented and a 'proof of concept' demonstrator has been built, based on a 20 kW, 13000 RPM aircraft fuel pump specffication. A novel current controller with near optimal transient performance is developed to enable precise shaping of the phase currents at high shaft speeds. The best operating regime for the machine is investigated to optimise the power to mass ratio of the drive. A list of the most likely electrical faults is considered. Some faults result in large fault currents and require rapid detection to prevent fault propagation. Several novel fault sensors are discussed. Fault detection and identification schemes are developed, including new schemes for rapid detection of turn to turn faults and power device short circuit faults. Post fault control schemes are described which enable the drive to continue to operate indefinitely in the presence of each fault. Finally, results show the initially healthy drive operating up to, through and beyond the introduction of each of the most serious faults.EPSR

    Assessment of avionics technology in European aerospace organizations

    Get PDF
    This report provides a summary of the observations and recommendations made by a technical panel formed by the National Aeronautics and Space Administration (NASA). The panel, comprising prominent experts in the avionics field, was tasked to visit various organizations in Europe to assess the level of technology planned for use in manufactured civil avionics in the future. The primary purpose of the study was to assess avionics systems planned for implementation or already employed on civil aircraft and to evaluate future research, development, and engineering (RD&E) programs, address avionic systems and aircraft programs. The ultimate goal is to ensure that the technology addressed by NASa programs is commensurate with the needs of the aerospace industry at an international level. The panel focused on specific technologies, including guidance and control systems, advanced cockpit displays, sensors and data networks, and fly-by-wire/fly-by-light systems. However, discussions the panel had with the European organizations were not limited to these topics
    corecore