5 research outputs found

    Modelling Principles and Methodologies: Relations in Anatomical Ontologies

    Get PDF
    It is now increasingly accepted that many existing biological and medical ontologies can be improved by adopting tools and methods that bring a greater degree of logical and ontological rigor. In this chapter we will focus on the merits of a logically sound approach to ontologies from a methodological point of view. As we shall see, one crucial feature of a logically sound approach is that we have clear and functional definitions of the relational expressions such as ‘is a’ and ‘part of ’

    The Teleost Anatomy Ontology: Anatomical Representation for the Genomics Age

    Get PDF
    The rich knowledge of morphological variation among organisms reported in the systematic literature has remained in free-text format, impractical for use in large-scale synthetic phylogenetic work. This noncomputable format has also precluded linkage to the large knowledgebase of genomic, genetic, developmental, and phenotype data in model organism databases. We have undertaken an effort to prototype a curated, ontology-based evolutionary morphology database that maps to these genetic databases (http://kb.phenoscape.org) to facilitate investigation into the mechanistic basis and evolution of phenotypic diversity. Among the first requirements in establishing this database was the development of a multispecies anatomy ontology with the goal of capturing anatomical data in a systematic and computable manner. An ontology is a formal representation of a set of concepts with defined relationships between those concepts. Multispecies anatomy ontologies in particular are an efficient way to represent the diversity of morphological structures in a clade of organisms, but they present challenges in their development relative to single-species anatomy ontologies. Here, we describe the Teleost Anatomy Ontology (TAO), a multispecies anatomy ontology for teleost fishes derived from the Zebrafish Anatomical Ontology (ZFA) for the purpose of annotating varying morphological features across species. To facilitate interoperability with other anatomy ontologies, TAO uses the Common Anatomy Reference Ontology as a template for its upper level nodes, and TAO and ZFA are synchronized, with zebrafish terms specified as subtypes of teleost terms. We found that the details of ontology architecture have ramifications for querying, and we present general challenges in developing a multispecies anatomy ontology, including refinement of definitions, taxon-specific relationships among terms, and representation of taxonomically variable developmental pathways.This work was supported by the National Science Foundation (NSF DBI 0641025), National Institutes of Health (HG002659), and the National Evolutionary Synthesis Center (NSF EF-0423641)

    Barry Smith an sich

    Get PDF
    Festschrift in Honor of Barry Smith on the occasion of his 65th Birthday. Published as issue 4:4 of the journal Cosmos + Taxis: Studies in Emergent Order and Organization. Includes contributions by Wolfgang Grassl, Nicola Guarino, John T. Kearns, Rudolf Lüthe, Luc Schneider, Peter Simons, Wojciech Żełaniec, and Jan Woleński

    Publications by Barry Smith

    Get PDF

    Biomedical Ontologies

    Get PDF
    We begin at the beginning, with an outline of Aristotle’s views on ontology and with a discussion of the influence of these views on Linnaeus. We move from there to consider the data standardization initiatives launched in the 19th century, and then turn to investigate how the idea of computational ontologies developed in the AI and knowledge representation communities in the closing decades of the 20th century. We show how aspects of this idea, particularly those relating to the use of the term 'concept' in ontology development, influenced SNOMED CT and other medical terminologies. Against this background we then show how the Foundational Model of Anatomy, the Gene Ontology, Basic Formal Ontology and other OBO Foundry ontologies came into existence and discuss their role in the development of contemporary biomedical informatics
    corecore