7,721 research outputs found

    A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction

    Get PDF
    In spite of its importance, passenger demand prediction is a highly challenging problem, because the demand is simultaneously influenced by the complex interactions among many spatial and temporal factors and other external factors such as weather. To address this problem, we propose a Spatio-TEmporal Fuzzy neural Network (STEF-Net) to accurately predict passenger demands incorporating the complex interactions of all known important factors. We design an end-to-end learning framework with different neural networks modeling different factors. Specifically, we propose to capture spatio-temporal feature interactions via a convolutional long short-term memory network and model external factors via a fuzzy neural network that handles data uncertainty significantly better than deterministic methods. To keep the temporal relations when fusing two networks and emphasize discriminative spatio-temporal feature interactions, we employ a novel feature fusion method with a convolution operation and an attention layer. As far as we know, our work is the first to fuse a deep recurrent neural network and a fuzzy neural network to model complex spatial-temporal feature interactions with additional uncertain input features for predictive learning. Experiments on a large-scale real-world dataset show that our model achieves more than 10% improvement over the state-of-the-art approaches.Comment: https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.1

    Laparoscopy Pneumoperitoneum Fuzzy Modeling

    Get PDF
    Abstract: Gas volume to intra-peritoneal pressure fuzzy modeling for evaluating pneumoperitoneum in videolaparoscopic surgery is proposed in this paper. The proposed approach innovates in using fuzzy logic and fuzzy set theory for evaluating the accuracy of the prognosis value in order to minimize or avoid iatrogenic injuries due to the blind needle puncture. In so doing, it demonstrates the feasibility of fuzzy analysis to contribute to medicine and health care. Fuzzy systems is employed here in synergy with artificial neural network based on backpropaga tion, multilayer perceptron architecture for building up numerical functions. Experimental data employed for analysis were collected in the accomplishment of the pneumoperitoneum in a random population of patients submitted to videolaparoscopic surgeries. Numerical results indicate that the proposed fuzzy mapping for describing the relation from the intra peritoneal pressure measures as function injected gas volumes succeeded in determinining a fuzzy model for this nonlinear system when compared to the statistical model

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach

    Full text link
    © 2017, Springer Science+Business Media, LLC. Resource sharing, as a coordination mechanism, can mitigate disruptions in supply and changes in demand. It is particularly crucial for platelets because they have a short lifespan and need to be transferred and allocated within a limited time to prevent waste or shortages. Thus, a coordinated model comprised of a mixed vertical-horizontal structure, for the logistics of platelets, is proposed for disaster relief operations in the response phase. The aim of this research is to reduce the wastage and shortage of platelets due to their critical role in wound healing. We present a bi-objective location-allocation robust possibilistic programming model for designing a two-layer coordinated organization strategy for multi-type blood-derived platelets under demand uncertainty. Computational results, derived using a heuristic ε-constraint algorithm, are reported and discussed to show the applicability of the proposed model. The experimental results indicate that surpluses and shortages in platelets remarkably declined following instigation of a coordinated disaster relief operation

    Contributions to statistical machine learning algorithm

    Get PDF
    This thesis's research focus is on computational statistics along with DEAR (abbreviation of differential equation associated regression) model direction, and that in mind, the journal papers are written as contributions to statistical machine learning algorithm literature

    A Type-2 Fuzzy Logic Based System for Malaria Epidemic Prediction in Ethiopia

    Get PDF
    Malaria is the most prevalent mosquito-borne disease throughout tropical and subtropical regions of the world with severe medical, economic, and social impact. Malaria is a serious public health problem in Ethiopia since 1959, even if, its morbidity and mortality have been reduced starting from 2001. Various studies were conducted to predict the malaria epidemic using mathematical and statistical approaches, nevertheless, they had no learning capabilities. In this paper, we present a Type-2 Fuzzy Logic Based System for Malaria epidemic prediction in Ethiopia which was trained using real data collected throughout Ethiopia from 2013 to 2017. Fuzzy Logic Based Systems provide a transparent model which employs IF-Then rules for the prediction that could be easily analyzed and interpreted by decision-makers. This is quite important to fight the sources of Malaria and take the needed preventive measures where the generated rules from our system were able to explain the situations and intensity of input factors which contributed to Malaria epidemic incidence up to three months ahead. The presented Type-2 Fuzzy Logic System (T2FLS) learns its rules and fuzzy set parameters from data and was able to outperform its counterparts T1FLS in 2% and ANFIS in 0.33% in the accuracy of prediction of Malaria epidemic in Ethiopia. In addition, the proposed system did shed light on the main causes behind such outbreaks in Ethiopia because of its high level of interpretabilit

    Using linear programming for weights identification of generalized bonferroni means in R

    Full text link
    The generalized Bonferroni mean is able to capture some interaction effects between variables and model mandatory requirements. We present a number of weights identification algorithms we have developed in the R programming language in order to model data using the generalized Bonferroni mean subject to various preferences. We then compare its accuracy when fitting to the journal ranks dataset
    corecore