12,167 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints

    Full text link
    This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.Comment: 24 pages, 13 figure

    Toward a Mathematical Theory of Behavioral-Social Dynamics for Pedestrian Crowds

    Full text link
    This paper presents a new approach to behavioral-social dynamics of pedestrian crowds by suitable development of methods of the kinetic theory. It is shown how heterogeneous individual behaviors can modify the collective dynamics, as well as how local unusual behaviors can propagate in the crowd. The main feature of this approach is a detailed analysis of the interactions between dynamics and social behaviors.Comment: 22 pages, 5 figure

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure
    corecore