5,265 research outputs found

    An exTS based Neuro-Fuzzy algorithm for prognostics and tool condition monitoring.

    No full text
    International audienceThe growing interest in predictive maintenance makes industrials and researchers turning themselves to artificial intelligence methods for fulfilling the tasks of condition monitoring and prognostics. Within this frame, the general purpose of this paper is to investigate the capabilities of an Evolving eXtended Takagi Sugeno (exTS) based neuro-fuzzy algorithm to predict the tool condition in high-speed machining conditions. The performance of evolving Neuro-Fuzzy model is compared with an Adaptive Neuro-Fuzzy Inference System (ANFIS) and a Multiple Regression Model (MRM) in term of accuracy and reliability through a case study of tool condition monitoring. The reliability of exTS also investigated

    Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process

    Get PDF
    Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model

    Smart Traction Control Systems for Electric Vehicles Using Acoustic Road-type Estimation

    Full text link
    The application of traction control systems (TCS) for electric vehicles (EV) has great potential due to easy implementation of torque control with direct-drive motors. However, the control system usually requires road-tire friction and slip-ratio values, which must be estimated. While it is not possible to obtain the first one directly, the estimation of latter value requires accurate measurements of chassis and wheel velocity. In addition, existing TCS structures are often designed without considering the robustness and energy efficiency of torque control. In this work, both problems are addressed with a smart TCS design having an integrated acoustic road-type estimation (ARTE) unit. This unit enables the road-type recognition and this information is used to retrieve the correct look-up table between friction coefficient and slip-ratio. The estimation of the friction coefficient helps the system to update the necessary input torque. The ARTE unit utilizes machine learning, mapping the acoustic feature inputs to road-type as output. In this study, three existing TCS for EVs are examined with and without the integrated ARTE unit. The results show significant performance improvement with ARTE, reducing the slip ratio by 75% while saving energy via reduction of applied torque and increasing the robustness of the TCS.Comment: Accepted to be published by IEEE Trans. on Intelligent Vehicles, 22 Jan 201

    Health Assessment and Life Prediction of cutting tools based on support vector regression.

    No full text
    International audienceThe integrity of machining tools is important to maintain a high level of surface quality. The wear of the tool can lead to poor surface quality of the workpiece and even to damage of the machine. Furthermore, in some applications such as aeronautics and precision engineering, it is preferable to change the tool earlier rather than to loose the workpiece because of its high price compared to the tool's one. Thus, to maintain a high quality of the manufactured pieces, it is necessary to assess and predict the level of wear of the cutting tool. This can be done by using condition monitoring and prognostics. The aim is then to estimate and predict the amount of wear and calculate the remaining useful life of the cutting tool. This paper presents a method for tool condition assessment and life prediction. The method is based on nonlinear feature reduction and support vector regression. The number of original features extracted from the monitoring signals is first reduced. These features are then used to learn nonlinear regression models to estimate and predict the level of wear. The method is applied on experimental data taken from a set of cuttings and simulation results are given. These results show that the proposed method is suitable for assessing the wear evolution of the cutting tools and predicting their remaining useful life. This information can then be used by the operators to take appropriate maintenance actions

    In-materio neuromimetic devices: Dynamics, information processing and pattern recognition

    Full text link
    The story of information processing is a story of great success. Todays' microprocessors are devices of unprecedented complexity and MOSFET transistors are considered as the most widely produced artifact in the history of mankind. The current miniaturization of electronic circuits is pushed almost to the physical limit and begins to suffer from various parasitic effects. These facts stimulate intense research on neuromimetic devices. This feature article is devoted to various in materio implementation of neuromimetic processes, including neuronal dynamics, synaptic plasticity, and higher-level signal and information processing, along with more sophisticated implementations, including signal processing, speech recognition and data security. Due to vast number of papers in the field, only a subjective selection of topics is presented in this review

    Model-based observer proposal for surface roughness monitoring

    Get PDF
    Comunicación presentada a MESIC 2019 8th Manufacturing Engineering Society International Conference (Madrid, 19-21 de Junio de 2019)In the literature, many different machining monitoring systems for surface roughness and tool condition have been proposed and validated experimentally. However, these approaches commonly require costly equipment and experimentation. In this paper, we propose an alternative monitoring system for surface roughness based on a model-based observer considering simple relationships between tool wear, power consumption and surface roughness. The system estimates the surface roughness according to simple models and updates the estimation fusing the information from quality inspection and power consumption. This monitoring strategy is aligned with the industry 4.0 practices and promotes the fusion of data at different shop-floor levels

    Neuro-electronic technology in medicine and beyond

    Get PDF
    This dissertation looks at the technology and social issues involved with interfacing electronics directly to the human nervous system, in particular the methods for both reading and stimulating nerves. The development and use of cochlea implants is discussed, and is compared with recent developments in artificial vision. The final sections consider a future for non-medicinal applications of neuro-electronic technology. Social attitudes towards use for both medicinal and non-medicinal purposes are discussed, and the viability of use in the latter case assessed

    Intelligent classification using adaptive fuzzy logic systems

    Get PDF
    Abstract Fuzzy systems are currently finding practical applications, ranging from “soft” regulatory control in consumer products to accurate modeling of non-linear systems. A novel approach, based on adaptive fuzzy logic systems, has been discussed in this paper. Its performance is evaluated through a simulation study, using metered data collected from a roadside microphone-array sensor at the Valle d’Aosta highway in north-western Italy. The results indicate that the fuzzy classifier based on the proposed defuzzification method, namely area of balance (AOB), provide more accurate classifications compared to other classifiers

    NASA Tech Briefs, March 1995

    Get PDF
    This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Science

    Who wrote this scientific text?

    No full text
    The IEEE bibliographic database contains a number of proven duplications with indication of the original paper(s) copied. This corpus is used to test a method for the detection of hidden intertextuality (commonly named "plagiarism"). The intertextual distance, combined with the sliding window and with various classification techniques, identifies these duplications with a very low risk of error. These experiments also show that several factors blur the identity of the scientific author, including variable group authorship and the high levels of intertextuality accepted, and sometimes desired, in scientific papers on the same topic
    corecore