5 research outputs found

    Coupled Recurrent Models for Polyphonic Music Composition

    Full text link
    This paper introduces a novel recurrent model for music composition that is tailored to the structure of polyphonic music. We propose an efficient new conditional probabilistic factorization of musical scores, viewing a score as a collection of concurrent, coupled sequences: i.e. voices. To model the conditional distributions, we borrow ideas from both convolutional and recurrent neural models; we argue that these ideas are natural for capturing music's pitch invariances, temporal structure, and polyphony. We train models for single-voice and multi-voice composition on 2,300 scores from the KernScores dataset.Comment: 13 pages; long version of the paper appearing in ISMIR 201

    Modelling Symbolic Music: Beyond the Piano Roll

    Full text link
    In this paper, we consider the problem of probabilistically modelling symbolic music data. We introduce a representation which reduces polyphonic music to a univariate categorical sequence. In this way, we are able to apply state of the art natural language processing techniques, namely the long short-term memory sequence model. The representation we employ permits arbitrary rhythmic structure, which we assume to be given. We show that our model is effective on four out of four piano roll based benchmark datasets. We further improve our model by augmenting our training data set with transpositions of the original pieces through all musical keys, thereby convincingly advancing the state of the art on these benchmark problems. We also fit models to music which is unconstrained in its rhythmic structure, discuss the properties of this model, and provide musical samples which are more sophisticated than previously possible with this class of recurrent neural network sequence models. We also provide our newly preprocessed data set of non piano-roll music data

    The NES Music Database: A multi-instrumental dataset with expressive performance attributes

    Full text link
    Existing research on music generation focuses on composition, but often ignores the expressive performance characteristics required for plausible renditions of resultant pieces. In this paper, we introduce the Nintendo Entertainment System Music Database (NES-MDB), a large corpus allowing for separate examination of the tasks of composition and performance. NES-MDB contains thousands of multi-instrumental songs composed for playback by the compositionally-constrained NES audio synthesizer. For each song, the dataset contains a musical score for four instrument voices as well as expressive attributes for the dynamics and timbre of each voice. Unlike datasets comprised of General MIDI files, NES-MDB includes all of the information needed to render exact acoustic performances of the original compositions. Alongside the dataset, we provide a tool that renders generated compositions as NES-style audio by emulating the device's audio processor. Additionally, we establish baselines for the tasks of composition, which consists of learning the semantics of composing for the NES synthesizer, and performance, which involves finding a mapping between a composition and realistic expressive attributes.Comment: Published as a conference paper at ISMIR 201

    Recurrent Neural Network from Adder's Perspective: Carry-lookahead RNN

    Full text link
    The recurrent network architecture is a widely used model in sequence modeling, but its serial dependency hinders the computation parallelization, which makes the operation inefficient. The same problem was encountered in serial adder at the early stage of digital electronics. In this paper, we discuss the similarities between recurrent neural network (RNN) and serial adder. Inspired by carry-lookahead adder, we introduce carry-lookahead module to RNN, which makes it possible for RNN to run in parallel. Then, we design the method of parallel RNN computation, and finally Carry-lookahead RNN (CL-RNN) is proposed. CL-RNN takes advantages in parallelism and flexible receptive field. Through a comprehensive set of tests, we verify that CL-RNN can perform better than existing typical RNNs in sequence modeling tasks which are specially designed for RNNs

    An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

    Full text link
    For most deep learning practitioners, sequence modeling is synonymous with recurrent networks. Yet recent results indicate that convolutional architectures can outperform recurrent networks on tasks such as audio synthesis and machine translation. Given a new sequence modeling task or dataset, which architecture should one use? We conduct a systematic evaluation of generic convolutional and recurrent architectures for sequence modeling. The models are evaluated across a broad range of standard tasks that are commonly used to benchmark recurrent networks. Our results indicate that a simple convolutional architecture outperforms canonical recurrent networks such as LSTMs across a diverse range of tasks and datasets, while demonstrating longer effective memory. We conclude that the common association between sequence modeling and recurrent networks should be reconsidered, and convolutional networks should be regarded as a natural starting point for sequence modeling tasks. To assist related work, we have made code available at http://github.com/locuslab/TCN
    corecore