1,800 research outputs found

    The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    Get PDF
    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and O2_{2}^- ions. When the electric field rises above the breakdown and the detachment threshold, which are similar in air, electrons can detach from O2_{2}^- and start ionization avalanches. These avalanches together create one large discharge, in contrast to the `double-headed' streamers found in many fluid simulations. On the other hand, in background fields below breakdown, something must enhance the field sufficiently for a streamer to form. We use a strongly ionized seed of electrons and positive ions for this, with which we observe the growth of positive streamers. Negative streamers were not observed. Below breakdown, the inclusion of electron detachment does not change the results much, and we observe similar discharge development as in fluid simulations

    Terahertz transport dynamics of graphene charge carriers

    Get PDF

    A fundamental work on THz measurement techniques for application to steel manufacturing processes

    Get PDF
    The terahertz (THz) waves had not been obtained except by a huge system, such as a free electron laser, until an invention of a photo-mixing technique at Bell laboratory in 1984 [1]. The first method using the Auston switch could generate up to 1 THz [2]. After then, as a result of some efforts for extending the frequency limit, a combination of antennas for the generation and the detection reached several THz [3, 4]. This technique has developed, so far, with taking a form of filling up the so-called THz gap . At the same time, a lot of researches have been trying to increase the output power as well [5-7]. In the 1990s, a big advantage in the frequency band was brought by non-linear optical methods [8-11]. The technique led to drastically expand the frequency region and recently to realize a measurement up to 41 THz [12]. On the other hand, some efforts have yielded new generation and detection methods from other approaches, a CW-THz as well as the pulse generation [13-19]. Especially, a THz luminescence and a laser, originated in a research on the Bloch oscillator, are recently generated from a quantum cascade structure, even at an only low temperature of 60 K [20-22]. This research attracts a lot of attention, because it would be a breakthrough for the THz technique to become widespread into industrial area as well as research, in a point of low costs and easier operations. It is naturally thought that a technology of short pulse lasers has helped the THz field to be developed. As a background of an appearance of a stable Ti:sapphire laser and a high power chirped pulse amplification (CPA) laser, instead of a dye laser, a lot of concentration on the techniques of a pulse compression and amplification have been done. [23] Viewed from an application side, the THz technique has come into the limelight as a promising measurement method. A discovery of absorption peaks of a protein and a DNA in the THz region is promoting to put the technique into practice in the field of medicine and pharmaceutical science from several years ago [24-27]. It is also known that some absorption of light polar-molecules exist in the region, therefore, some ideas of gas and water content monitoring in the chemical and the food industries are proposed [28-32]. Furthermore, a lot of reports, such as measurements of carrier distribution in semiconductors, refractive index of a thin film and an object shape as radar, indicate that this technique would have a wide range of application [33-37]. I believe that it is worth challenging to apply it into the steel-making industry, due to its unique advantages. The THz wavelength of 30-300 ¼m can cope with both independence of a surface roughness of steel products and a detection with a sub-millimeter precision, for a remote surface inspection. There is also a possibility that it can measure thickness or dielectric constants of relatively high conductive materials, because of a high permeability against non-polar dielectric materials, short pulse detection and with a high signal-to-noise ratio of 103-5. Furthermore, there is a possibility that it could be applicable to a measurement at high temperature, for less influence by a thermal radiation, compared with the visible and infrared light. These ideas have motivated me to start this THz work

    Evaluation of 4h-Sic Photoconductive Switches for Pulsed Power Applications Based on Numerical Simulations

    Get PDF
    Since the early studies by Auston, photoconductive semiconductor switches (PCSSs) have been investigated intensively for many applications owing to their unique advantages over conventional gas and mechanical switches. These advantages include high speeds, fast rise times, optical isolation, compact geometry, and negligible jitter. Another important requirement is the ability to operate at high repetition rates with long device lifetimes (i.e., good reliability without degradation). Photoconductive semiconductor switches (PCSSs) are low-jitter compact alternatives to traditional gas switches in pulsed power systems. The physical properties of Silicon Carbide (SiC), such as a large bandgap (3.1-3.35 eV), high avalanche breakdown field (~3 MV/cm), and large thermal conductivity (4-5 W/cm-K) with superior radiation hardness and resistance to chemical attack, make SiC an attractive candidate for high voltage, high temperature, and high power device applications. A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC was carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, were comprehensively included. Results of our model matched the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters were also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples could be discounted up to applied fields as high as 275 kV/cm. In addition, calculations of electric field distributions in a SiC photoconductive semiconductor switch structure with metal contacts employing contact extensions on a high-k HfO2 dielectric were carried out, with the goal of assessing reductions in the peak electric fields. For completeness, analysis of thermal heating in a lateral PCSS structure with such modified geometries after photoexcitation was also included. The simulation results of the electric field distribution show that peak electric fields, and hence the potential for device failure, can be mitigated by these strategies. A combination of the two approaches was shown to produce up to a ~67% reduction in peak fields. The reduced values were well below the threshold for breakdown in SiC material using biasing close to experimental reports. The field mitigation was shown to depend on the length of the metal overhang. Further, the calculations show that, upon field mitigation, the internal temperature rise would also be controlled. A maximum value of 980 K was obtained here for an 8 ns electrical pulse at a 20 kV external bias, which is well below the limits for generating local stress or cracks or defects
    corecore