468 research outputs found

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    Semantic architecture for sensors

    Get PDF
    Based on the report for the unit “Sociology of New Information Technologies” of the Master on Computer Sciences at FCT/University Nova Lisbon in 2015-16. The responsible of this curricular unit is Prof. António MonizTechnological progress in recent years and the increase of Internet of things (IoT) in our daily life brought a huge flood of data that can only be handle, processed and exploited in real-time with the help of Information and Communication Technologies (ICT). The ICT is one main element in order to achieve more efficient and sustainable an environment resource management, while the needs of the citizens are satisfied, creating new applications to improve citizen’s quality life. The creation of new systems that allow the acquisition of context information, automatically and transparently, and give that information to decision support systems are important aspects for information societies. In this paper it will be presented the usability and importance of sensors to get information from our environment in order to know what and when happen changes around us as well as the importance of ontologies in the structure and organization of the systems, to acquire new knowledge

    SLAM research for port AGV based on 2D LIDAR

    Get PDF
    With the increase in international trade, the transshipment of goods at international container ports is very busy. The AGV (Automated Guided Vehicle) has been used as a new generation of automated container horizontal transport equipment. The AGV is an automated unmanned vehicle that can work 24 hours a day, increasing productivity and reducing labor costs compared to using container trucks. The ability to obtain information about the surrounding environment is a prerequisite for the AGV to automatically complete tasks in the port area. At present, the method of AGV based on RFID tag positioning and navigation has a problem of excessive cost. This dissertation has carried out a research on applying light detection and ranging (LIDAR) simultaneous localization and mapping (SLAM) technology to port AGV. In this master's thesis, a mobile test platform based on a laser range finder is developed to scan 360-degree environmental information (distance and angle) centered on the LIDAR and upload the information to a real-time database to generate surrounding environmental maps, and the obstacle avoidance strategy was developed based on the acquired information. The effectiveness of the platform was verified by the experiments from multiple scenarios. Then based on the first platform, another experimental platform with encoder and IMU sensor was developed. In this platform, the functionality of SLAM is enabled by the GMapping algorithm and the installation of the encoder and IMU sensor. Based on the established environment SLAM map, the path planning and obstacle avoidance functions of the platform were realized.Com o aumento do comércio internacional, o transbordo de mercadorias em portos internacionais de contentores é muito movimentado. O AGV (“Automated Guided Vehicle”) foi usado como uma nova geração de equipamentos para transporte horizontal de contentores de forma automatizada. O AGV é um veículo não tripulado automatizado que pode funcionar 24 horas por dia, aumentando a produtividade e reduzindo os custos de mão-de-obra em comparação com o uso de camiões porta-contentores. A capacidade de obter informações sobre o ambiente circundante é um pré-requisito para o AGV concluir automaticamente tarefas na área portuária. Atualmente, o método de AGV baseado no posicionamento e navegação de etiquetas RFID apresenta um problema de custo excessivo. Nesta dissertação foi realizada uma pesquisa sobre a aplicação da tecnologia LIDAR de localização e mapeamento simultâneo (SLAM) num AGV. Uma plataforma de teste móvel baseada num telémetro a laser é desenvolvida para examinar o ambiente em redor em 360 graus (distância e ângulo), centrado no LIDAR, e fazer upload da informação para uma base de dados em tempo real para gerar um mapa do ambiente em redor. Uma estratégia de prevenção de obstáculos foi também desenvolvida com base nas informações adquiridas. A eficácia da plataforma foi verificada através da realização de testes com vários cenários e obstáculos. Por fim, com base na primeira plataforma, uma outra plataforma experimental com codificador e sensor IMU foi também desenvolvida. Nesta plataforma, a funcionalidade do SLAM é ativada pelo algoritmo GMapping e pela instalação do codificador e do sensor IMU. Com base no estabelecimento do ambiente circundante SLAM, foram realizadas as funções de planeamento de trajetória e prevenção de obstáculos pela plataforma

    Pulse mode of operation : a new booster of TEG, improving power up to X2.7 : to better fit IoT requirements

    Get PDF
    Internet of Things (IoT) is becoming the new driver for semiconductor industry and the largest electronic market ever seen. The number of IoT nodes is already many times larger than the human population and is continuously growing. It is thus mandatory that IoT nodes become self-supplying with energy harvested from environment since periodic exchange of batteries in such a huge number of units (often located in inaccessible places e.g. industrial environment or elements of constructions) is impractical and soon will be simply impossible. Photovoltaic generators may easily harvest energy where light is available, but the IoT nodes often work in dark, hidden locations where the only available energy sources are heat losses. There, ThermoElectric Generators (TEGs) could be the best candidate, if not that if we speak of exploiting heat losses it often means very low temperature differences. This means conditions where TEGs power production drops down dramatically. In this paper we put forward a new idea of TEG's pulse operation that boosts the power production up to X2.7. This extends the domain of applicability of TEGs to lower temperature differences, where conventional TEGs are out of the game. Next, we show that the improvement X2.7 maintains also at larger temperature differences that presents obvious advantages

    Acoustic power distribution techniques for wireless sensor networks

    Get PDF
    Recent advancements in wireless power transfer technologies can solve several residual problems concerning the maintenance of wireless sensor networks. Among these, air-based acoustic systems are still less exploited, with considerable potential for powering sensor nodes. This thesis aims to understand the significant parameters for acoustic power transfer in air, comprehend the losses, and quantify the limitations in terms of distance, alignment, frequency, and power transfer efficiency. This research outlines the basic concepts and equations overlooking sound wave propagation, system losses, and safety regulations to understand the prospects and limitations of acoustic power transfer. First, a theoretical model was established to define the diffraction and attenuation losses in the system. Different off-the-shelf transducers were experimentally investigated, showing that the FUS-40E transducer is most appropriate for this work. Subsequently, different load-matching techniques are analysed to identify the optimum method to deliver power. The analytical results were experimentally validated, and complex impedance matching increased the bandwidth from 1.5 to 4 and the power transfer efficiency from 0.02% to 0.43%. Subsequently, a detailed 3D profiling of the acoustic system in the far-field region was provided, analysing the receiver sensitivity to disturbances in separation distance, receiver orientation and alignment. The measured effects of misalignment between the transducers are provided as a design graph, correlating the output power as a function of separation distance, offset, loading methods and operating frequency. Finally, a two-stage wireless power network is designed, where energy packets are inductively delivered to a cluster of nodes by a recharge vehicle and later acoustically distributed to devices within the cluster. A novel dynamic recharge scheduling algorithm that combines weighted genetic clustering with nearest neighbour search is developed to jointly minimise vehicle travel distance and power transfer losses. The efficacy and performance of the algorithm are evaluated in simulation using experimentally derived traces that presented 90% throughput for large, dense networks.Open Acces

    Design and implementation of a domestic disinfection robot based on 2D lidar

    Get PDF
    In the battle against the Covid-19, the demand for disinfection robots in China and other countries has increased rapidly. Manual disinfection is time-consuming, laborious, and has safety hazards. For large public areas, the deployment of human resources and the effectiveness of disinfection face significant challenges. Using robots for disinfection therefore becomes an ideal choice. At present, most disinfection robots on the market use ultraviolet or disinfectant to disinfect, or both. They are mostly put into service in hospitals, airports, hotels, shopping malls, office buildings, or other places with daily high foot traffic. These robots are often built-in with automatic navigation and intelligent recognition, ensuring day-to-day operations. However, they usually are expensive and need regular maintenance. The sweeping robots and window-cleaning robots have been put into massive use, but the domestic disinfection robots have not gained much attention. The health and safety of a family are also critical in epidemic prevention. This thesis proposes a low-cost, 2D lidar-based domestic disinfection robot and implements it. The robot possesses dry fog disinfection, ultraviolet disinfection, and air cleaning. The thesis is mainly engaged in the following work: The design and implementation of the control board of the robot chassis are elaborated in this thesis. The control board uses STM32F103ZET6 as the MCU. Infrared sensors are used in the robot to prevent from falling over and walk along the wall. The Ultrasonic sensor is installed in the front of the chassis to detect and avoid the path's obstacles. Photoelectric switches are used to record the information when the potential collisions happen in the early phase of mapping. The disinfection robot adopts a centrifugal fan and HEPA filter for air purification. The ceramic atomizer is used to break up the disinfectant's molecular structure to produce the dry fog. The UV germicidal lamp is installed at the bottom of the chassis to disinfect the ground. The robot uses an air pollution sensor to estimate the air quality. Motors are used to drive the chassis to move. The lidar transmits its data to the navigation board directly through the wires and the edge-board contact on the control board. The control board also manages the atmosphere LEDs, horn, press-buttons, battery, LDC, and temperature-humidity sensor. It exchanges data with and executes the command from the navigation board and manages all kinds of peripheral devices. Thus, it is the administrative unit of the disinfection robot. Moreover, the robot is designed in a way that reduces costs while ensuring quality. The control board’s embedded software is realized and analyzed in the thesis. The communication protocol that links the control board and the navigation board is implemented in software. Standard commands, specific commands, error handling, and the data packet format are detailed and processed in software. The software effectively drives and manages the peripheral devices. SLAMWARE CORE is used as the navigation board to complete the system design. System tests like disinfecting, mapping, navigating, and anti-falling were performed to polish and adjust the structure and functionalities of the robot. Raspberry Pi is also used with the control board to explore 2D Simultaneous Localization and Mapping (SLAM) algorithms, such as Hector, Karto, and Cartographer, in Robot Operating System (ROS) for the robot’s further development. The thesis is written from the perspective of engineering practice and proposes a feasible design for a domestic disinfection robot. Hardware, embedded software, and system tests are covered in the thesis

    Solar photovoltaic remote monitoring

    Get PDF
    Mestrado em ESTG-IPBRenewable energy systems are quickly becoming one of the most efficient way to generate electricity. Solar energy is one of the most appealing renewable energy sources for electrification. Harnessing solar energy requires a photovoltaic system that converts light energy from the sun into direct electricity. Therefore, to evaluate its performance, real-time monitoring system is needed. Some of photovoltaic system are installed in inaccessible locations and thus unable to be monitored from a dedicated location, so the monitoring must be remotely using web based interfaces. This project proposes to develop a prototype based on IoT technology for monitoring remotely and evaluating the performance of a solar photovoltaic system. This will facilitate preventive maintenance, fault detection, historical analysis, in addition to real time monitoring. For the project development, an ESP32 device is used to measure a set of sensors and transmit them through the MQTT protocol via WiFi technology to a MQTT Broker that manages and publishes data to a flow editor named Node-RED to be collected and sent to a database named InfluxDB, where data are stored and secured, and finally a visualization platform named Grafana, displays the measurements to be analyzed over time

    Wireless Sensor Network With Perpetual Motes for Terrestrial Snail Activity Monitoring

    Get PDF
    Wireless sensor networks (WSNs) are increasingly adopted in agriculture to monitor environmental variables to predict the presence of pests. Differently from these approaches, this paper introduces aWSN to detect the presence of snails in the field. The network can be used to both trigger an alarm of early pest presence and to further elaborate statistical models with the addition of environmental data as temperature or humidity to predict snail presence. In this paper we also design our own WSN simulator to account for real-life conditions as an uneven spacing of motes in the field or different currents generated by solar cells at the motes. This allows achieving more realistic network deployment in the field. Experimental tests are included in this paper, showing that our motes are perpetual in terms of energy consumptionConsellería de Cultura, Educación e Ordenación Universitaria (accreditation 2016-2019); European Regional Development Fund; Ministerio de Economía, Industria y Competitividad (TEC2015-66878-C3-3-R)S

    Design of a Multi-sensor and Re-configurable Smart Node for the IoT

    Get PDF
    The rapid deployment of the Internet of Things (IoT) is much dependent on the capacity of the IoT node to be able to self-adapt to the target application. With the increase of sensor networks and diversity of sensors available and with the increasing integration of multiple sensors in a sensor node, it is necessary to develop systems capable of handling all of these sensors with high level of flexibility. These may have different characteristics that provide quite distinct interface requirements, thus giving rise to the need for systems with re-configurable properties. With the implementation of sensor networks in places where energy supply is limited or non-existent, and in situations where technician intervention is expensive, there is a need to exchange conventional energy sources by methods of storage and harvesting of the energy present in the environment, where the sensor node is used (autonomous and renewable energy sources). This thesis will focus on the study and implementation of a family of re-configurable and multi-sensor IoT nodes with special emphasis on the energy storage and power management. It will also focus on the develop of a CAD tool in order to help in the design of CMOS circuits, for the purpose of integrating all the strategies here presented
    corecore