125,423 research outputs found

    HEGEL: Hypergraph Transformer for Long Document Summarization

    Full text link
    Extractive summarization for long documents is challenging due to the extended structured input context. The long-distance sentence dependency hinders cross-sentence relations modeling, the critical step of extractive summarization. This paper proposes HEGEL, a hypergraph neural network for long document summarization by capturing high-order cross-sentence relations. HEGEL updates and learns effective sentence representations with hypergraph transformer layers and fuses different types of sentence dependencies, including latent topics, keywords coreference, and section structure. We validate HEGEL by conducting extensive experiments on two benchmark datasets, and experimental results demonstrate the effectiveness and efficiency of HEGEL.Comment: EMNLP 202

    Joint Learning of Local and Global Features for Aspect-based Sentiment Classification

    Full text link
    Aspect-based sentiment classification (ASC) aims to judge the sentiment polarity conveyed by the given aspect term in a sentence. The sentiment polarity is not only determined by the local context but also related to the words far away from the given aspect term. Most recent efforts related to the attention-based models can not sufficiently distinguish which words they should pay more attention to in some cases. Meanwhile, graph-based models are coming into ASC to encode syntactic dependency tree information. But these models do not fully leverage syntactic dependency trees as they neglect to incorporate dependency relation tag information into representation learning effectively. In this paper, we address these problems by effectively modeling the local and global features. Firstly, we design a local encoder containing: a Gaussian mask layer and a covariance self-attention layer. The Gaussian mask layer tends to adjust the receptive field around aspect terms adaptively to deemphasize the effects of unrelated words and pay more attention to local information. The covariance self-attention layer can distinguish the attention weights of different words more obviously. Furthermore, we propose a dual-level graph attention network as a global encoder by fully employing dependency tag information to capture long-distance information effectively. Our model achieves state-of-the-art performance on both SemEval 2014 and Twitter datasets.Comment: under revie

    Eliminating Gradient Conflict in Reference-based Line-Art Colorization

    Full text link
    Reference-based line-art colorization is a challenging task in computer vision. The color, texture, and shading are rendered based on an abstract sketch, which heavily relies on the precise long-range dependency modeling between the sketch and reference. Popular techniques to bridge the cross-modal information and model the long-range dependency employ the attention mechanism. However, in the context of reference-based line-art colorization, several techniques would intensify the existing training difficulty of attention, for instance, self-supervised training protocol and GAN-based losses. To understand the instability in training, we detect the gradient flow of attention and observe gradient conflict among attention branches. This phenomenon motivates us to alleviate the gradient issue by preserving the dominant gradient branch while removing the conflict ones. We propose a novel attention mechanism using this training strategy, Stop-Gradient Attention (SGA), outperforming the attention baseline by a large margin with better training stability. Compared with state-of-the-art modules in line-art colorization, our approach demonstrates significant improvements in Fr\'echet Inception Distance (FID, up to 27.21%) and structural similarity index measure (SSIM, up to 25.67%) on several benchmarks. The code of SGA is available at https://github.com/kunkun0w0/SGA .Comment: Accepted by ECCV202

    Recurrent Memory Networks for Language Modeling

    Get PDF
    Recurrent Neural Networks (RNN) have obtained excellent result in many natural language processing (NLP) tasks. However, understanding and interpreting the source of this success remains a challenge. In this paper, we propose Recurrent Memory Network (RMN), a novel RNN architecture, that not only amplifies the power of RNN but also facilitates our understanding of its internal functioning and allows us to discover underlying patterns in data. We demonstrate the power of RMN on language modeling and sentence completion tasks. On language modeling, RMN outperforms Long Short-Term Memory (LSTM) network on three large German, Italian, and English dataset. Additionally we perform in-depth analysis of various linguistic dimensions that RMN captures. On Sentence Completion Challenge, for which it is essential to capture sentence coherence, our RMN obtains 69.2% accuracy, surpassing the previous state-of-the-art by a large margin.Comment: 8 pages, 6 figures. Accepted at NAACL 201

    Dependency relations as source context in phrase-based SMT

    Get PDF
    The Phrase-Based Statistical Machine Translation (PB-SMT) model has recently begun to include source context modeling, under the assumption that the proper lexical choice of an ambiguous word can be determined from the context in which it appears. Various types of lexical and syntactic features such as words, parts-of-speech, and supertags have been explored as effective source context in SMT. In this paper, we show that position-independent syntactic dependency relations of the head of a source phrase can be modeled as useful source context to improve target phrase selection and thereby improve overall performance of PB-SMT. On a Dutch—English translation task, by combining dependency relations and syntactic contextual features (part-of-speech), we achieved a 1.0 BLEU (Papineni et al., 2002) point improvement (3.1% relative) over the baseline

    Neural End-to-End Learning for Computational Argumentation Mining

    Full text link
    We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiLSTMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning 'natural' subtasks, in a multi-task learning setup, improves performance.Comment: To be published at ACL 201
    corecore