25,557 research outputs found

    Neural Graph Collaborative Filtering

    Full text link
    Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions -- more specifically the bipartite graph structure -- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.Comment: SIGIR 2019; the latest version of NGCF paper, which is distinct from the version published in ACM Digital Librar

    Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids

    Full text link
    Real-life control tasks involve matters of various substances---rigid or soft bodies, liquid, gas---each with distinct physical behaviors. This poses challenges to traditional rigid-body physics engines. Particle-based simulators have been developed to model the dynamics of these complex scenes; however, relying on approximation techniques, their simulation often deviates from real-world physics, especially in the long term. In this paper, we propose to learn a particle-based simulator for complex control tasks. Combining learning with particle-based systems brings in two major benefits: first, the learned simulator, just like other particle-based systems, acts widely on objects of different materials; second, the particle-based representation poses strong inductive bias for learning: particles of the same type have the same dynamics within. This enables the model to quickly adapt to new environments of unknown dynamics within a few observations. We demonstrate robots achieving complex manipulation tasks using the learned simulator, such as manipulating fluids and deformable foam, with experiments both in simulation and in the real world. Our study helps lay the foundation for robot learning of dynamic scenes with particle-based representations.Comment: Accepted to ICLR 2019. Project Page: http://dpi.csail.mit.edu Video: https://www.youtube.com/watch?v=FrPpP7aW3L

    Dissemination of Health Information within Social Networks

    Full text link
    In this paper, we investigate, how information about a common food born health hazard, known as Campylobacter, spreads once it was delivered to a random sample of individuals in France. The central question addressed here is how individual characteristics and the various aspects of social network influence the spread of information. A key claim of our paper is that information diffusion processes occur in a patterned network of social ties of heterogeneous actors. Our percolation models show that the characteristics of the recipients of the information matter as much if not more than the characteristics of the sender of the information in deciding whether the information will be transmitted through a particular tie. We also found that at least for this particular advisory, it is not the perceived need of the recipients for the information that matters but their general interest in the topic
    corecore