1,013,626 research outputs found
A formal theory of conceptual modeling universals
Conceptual Modeling is a discipline of great relevance to several areas in Computer Science. In a series of papers [1,2,3] we have been using the General Ontological Language (GOL) and its underlying upper level ontology, proposed in [4,5], to evaluate the ontological correctness of conceptual models and to develop guidelines for how the constructs of a modeling language (UML) should be used in conceptual modeling. In this paper, we focus on the modeling metaconcepts of classifiers and objects from an ontological point of view. We use a philosophically and psychologically well-founded theory of universals to propose a UML profile for Ontology Representation and Conceptual Modeling. The formal semantics of the proposed modeling elements is presented in a language of modal logics with quantification restricted to Sortal universals
Neural Networks Compression for Language Modeling
In this paper, we consider several compression techniques for the language
modeling problem based on recurrent neural networks (RNNs). It is known that
conventional RNNs, e.g, LSTM-based networks in language modeling, are
characterized with either high space complexity or substantial inference time.
This problem is especially crucial for mobile applications, in which the
constant interaction with the remote server is inappropriate. By using the Penn
Treebank (PTB) dataset we compare pruning, quantization, low-rank
factorization, tensor train decomposition for LSTM networks in terms of model
size and suitability for fast inference.Comment: Keywords: LSTM, RNN, language modeling, low-rank factorization,
pruning, quantization. Published by Springer in the LNCS series, 7th
International Conference on Pattern Recognition and Machine Intelligence,
201
Language Modeling with Highway LSTM
Language models (LMs) based on Long Short Term Memory (LSTM) have shown good
gains in many automatic speech recognition tasks. In this paper, we extend an
LSTM by adding highway networks inside an LSTM and use the resulting Highway
LSTM (HW-LSTM) model for language modeling. The added highway networks increase
the depth in the time dimension. Since a typical LSTM has two internal states,
a memory cell and a hidden state, we compare various types of HW-LSTM by adding
highway networks onto the memory cell and/or the hidden state. Experimental
results on English broadcast news and conversational telephone speech
recognition show that the proposed HW-LSTM LM improves speech recognition
accuracy on top of a strong LSTM LM baseline. We report 5.1% and 9.9% on the
Switchboard and CallHome subsets of the Hub5 2000 evaluation, which reaches the
best performance numbers reported on these tasks to date.Comment: to appear in 2017 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU 2017
Clafer: Lightweight Modeling of Structure, Behaviour, and Variability
Embedded software is growing fast in size and complexity, leading to intimate
mixture of complex architectures and complex control. Consequently, software
specification requires modeling both structures and behaviour of systems.
Unfortunately, existing languages do not integrate these aspects well, usually
prioritizing one of them. It is common to develop a separate language for each
of these facets. In this paper, we contribute Clafer: a small language that
attempts to tackle this challenge. It combines rich structural modeling with
state of the art behavioural formalisms. We are not aware of any other modeling
language that seamlessly combines these facets common to system and software
modeling. We show how Clafer, in a single unified syntax and semantics, allows
capturing feature models (variability), component models, discrete control
models (automata) and variability encompassing all these aspects. The language
is built on top of first order logic with quantifiers over basic entities (for
modeling structures) combined with linear temporal logic (for modeling
behaviour). On top of this semantic foundation we build a simple but expressive
syntax, enriched with carefully selected syntactic expansions that cover
hierarchical modeling, associations, automata, scenarios, and Dwyer's property
patterns. We evaluate Clafer using a power window case study, and comparing it
against other notations that substantially overlap with its scope (SysML, AADL,
Temporal OCL and Live Sequence Charts), discussing benefits and perils of using
a single notation for the purpose
Formal Model Engineering for Embedded Systems Using Real-Time Maude
This paper motivates why Real-Time Maude should be well suited to provide a
formal semantics and formal analysis capabilities to modeling languages for
embedded systems. One can then use the code generation facilities of the tools
for the modeling languages to automatically synthesize Real-Time Maude
verification models from design models, enabling a formal model engineering
process that combines the convenience of modeling using an informal but
intuitive modeling language with formal verification. We give a brief overview
six fairly different modeling formalisms for which Real-Time Maude has provided
the formal semantics and (possibly) formal analysis. These models include
behavioral subsets of the avionics modeling standard AADL, Ptolemy II
discrete-event models, two EMF-based timed model transformation systems, and a
modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596
Language Modeling with Deep Transformers
We explore deep autoregressive Transformer models in language modeling for
speech recognition. We focus on two aspects. First, we revisit Transformer
model configurations specifically for language modeling. We show that well
configured Transformer models outperform our baseline models based on the
shallow stack of LSTM recurrent neural network layers. We carry out experiments
on the open-source LibriSpeech 960hr task, for both 200K vocabulary word-level
and 10K byte-pair encoding subword-level language modeling. We apply our
word-level models to conventional hybrid speech recognition by lattice
rescoring, and the subword-level models to attention based encoder-decoder
models by shallow fusion. Second, we show that deep Transformer language models
do not require positional encoding. The positional encoding is an essential
augmentation for the self-attention mechanism which is invariant to sequence
ordering. However, in autoregressive setup, as is the case for language
modeling, the amount of information increases along the position dimension,
which is a positional signal by its own. The analysis of attention weights
shows that deep autoregressive self-attention models can automatically make use
of such positional information. We find that removing the positional encoding
even slightly improves the performance of these models.Comment: To appear in the proceedings of INTERSPEECH 201
- …
