4,252 research outputs found

    Modeling Insider Attacks on Group Key-Exchange Protocols

    Get PDF
    Protocols for authenticated key exchange (AKE) allow parties within an insecure network to establish a common session key which can then be used to secure their future communication. It is fair to say that group AKE is currently less well understood than the case of two-party AKE; in particular, attacks by malicious insiders --- a concern specific to the group setting --- have so far been considered only in a relatively ``ad-hoc\u27\u27 fashion. The main contribution of this work is to address this deficiency by providing a formal, comprehensive model and definition of security for group AKE which automatically encompasses insider attacks. We do so by defining an appropriate ideal functionality for group AKE within the universal composability (UC) framework. As a side benefit, any protocol secure with respect to our definition is secure even when run concurrently with other protocols, and the key generated by any such protocol may be used securely in any subsequent application. In addition to proposing this definition, we show that the resulting notion of security is strictly stronger than the one proposed by Bresson, et al. (termed ``AKE-security\u27\u27), and that our definition implies all previously-suggested notions of security against insider attacks. We also show a simple technique for converting any AKE-secure protocol into one secure with respect to our definition

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Modelling Smart Card Security Protocols in SystemC TLM

    No full text
    Smart cards are an example of advanced chip technology. They allow information transfer between the card holder and the system over secure networks, but they contain sensitive data related to both the card holder and the system, that has to be kept private and confidential. The objective of this work is to create an executable model of a smart card system, including the security protocols and transactions, and to examine the strengths and determine the weaknesses by running tests on the model. The security objectives have to be considered during the early stages of systems development and design, an executable model will give the designer the advantage of exploring the vulnerabilities early, and therefore enhancing the system security. The Unified Modeling Language (UML) 2.0 is used to model the smart card security protocol. The executable model is programmed in SystemC with the Transaction Level Modeling (TLM) extensions. The final model was used to examine the effectiveness of a number of authentication mechanisms with different probabilities of failure. In addition, a number of probable attacks on the current security protocol were modeled to examine the vulnerabilities. The executable model shows that the smart card system security protocols and transactions need further improvement to withstand different types of security attacks

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore