2 research outputs found

    Modeling geological objects with the XML Schema

    Get PDF
    Abstract Interchange, storage, and management of geological data require the development of knowledge-based, standardized vocabularies and data structures. Concepts modeled and designed with the Unified Markup Language (UML), can be mapped into XML Schema Definition Language (XSDL) to compose modular markup languages for each discipline. Developing such efficient, intra-disciplinary, modular and reusable components, based on the XSDL namespace facility and the principles of object-oriented design, reduces redundancy, increases efficiency, scalability, and extensibility, and simplifies the maintenance and future extension of the code. This paper discusses the best practices of composition and reuse of modular intra-disciplinary components by applying XML Schema namespace syntax. In addition to several small examples given for a variety of geological cases, the paper constructs a UML conceptual model and markup language, applying an XML-type library, for a component of the plate tectonics knowledge base (TectonicsML) that deals with the divergent plate boundary.

    A multidisciplinary research approach to energy-related behavior in buildings

    Get PDF
    Occupant behavior in buildings is one of the key drivers of building energy performance. Closing the “performance gap” in the building sector requires a deeper understanding and consideration of the “human factor” in energy usage. For Europe and US to meet their challenging 2020 and 2050 energy and GHG reduction goals, we need to harness the potential savings of human behavior in buildings, in addition to deployment of energy efficient technologies and energy policies for buildings. Through involvement in international projects such as IEA ECBC Annex 53 and EBC Annex 66, the research conducted in the context of this thesis provided significant contributions to understand occupants’ interactions with building systems and to reduce their energy use in residential and commercial buildings over the entire building life cycle. The primary goal of this Ph.D. study is to explore and highlight the human factor in energy use as a fundamental aspect influencing the energy performance of buildings and maximizing energy efficiency – to the same extent as technological innovation. Scientific literature was reviewed to understand state-of-the-art gaps and limitations of research in the field. Human energy-related behavior in buildings emerges a stochastic and highly complex problem, which cannot be solved by one discipline alone. Typically, a technological-social dichotomy pertains to the human factor in reducing energy use in buildings. Progressing past that, this research integrates occupant behavior in a multidisciplinary approach that combines insights from the technical, analytical and social dimension. This is achieved by combining building physics (occupant behavior simulation in building energy models to quantify impact on building performance) and data science (data mining, analytics, modeling and profiling of behavioral patterns in buildings) with behavioral theories (engaging occupants and motivating energy-saving occupant behaviors) to provide multidisciplinary, innovative insights on human-centered energy efficiency in buildings. The systematic interconnection of these three dimensions is adopted at different scales. The building system is observed at the residential and commercial level. Data is gathered, then analyzed, modeled, standardized and simulated from the zone to the building level, up to the district scale. Concerning occupant behavior, this research focuses on individual, group and collective actions. Various stakeholders can benefit from this Ph.D. dissertation results. Audience of the research includes energy modelers, architects, HVAC engineers, operators, owners, policymakers, building technology vendors, as well as simulation program designers, implementers and evaluators. The connection between these different levels, research foci and targeted audience is not linear among the three observed systems. Rather, the multidisciplinary research approach to energy-related behavior in buildings proposed by this Ph.D. study has been adopted to explore solutions that could overcome the limitations and shortcomings in the state-of-the-art research
    corecore