1,812 research outputs found

    Auditing Search Engines for Differential Satisfaction Across Demographics

    Get PDF
    Many online services, such as search engines, social media platforms, and digital marketplaces, are advertised as being available to any user, regardless of their age, gender, or other demographic factors. However, there are growing concerns that these services may systematically underserve some groups of users. In this paper, we present a framework for internally auditing such services for differences in user satisfaction across demographic groups, using search engines as a case study. We first explain the pitfalls of na\"ively comparing the behavioral metrics that are commonly used to evaluate search engines. We then propose three methods for measuring latent differences in user satisfaction from observed differences in evaluation metrics. To develop these methods, we drew on ideas from the causal inference literature and the multilevel modeling literature. Our framework is broadly applicable to other online services, and provides general insight into interpreting their evaluation metrics.Comment: 8 pages Accepted at WWW 201

    Predicting Session Length in Media Streaming

    Full text link
    Session length is a very important aspect in determining a user's satisfaction with a media streaming service. Being able to predict how long a session will last can be of great use for various downstream tasks, such as recommendations and ad scheduling. Most of the related literature on user interaction duration has focused on dwell time for websites, usually in the context of approximating post-click satisfaction either in search results, or display ads. In this work we present the first analysis of session length in a mobile-focused online service, using a real world data-set from a major music streaming service. We use survival analysis techniques to show that the characteristics of the length distributions can differ significantly between users, and use gradient boosted trees with appropriate objectives to predict the length of a session using only information available at its beginning. Our evaluation on real world data illustrates that our proposed technique outperforms the considered baseline.Comment: 4 pages, 3 figure

    You Must Have Clicked on this Ad by Mistake! Data-Driven Identification of Accidental Clicks on Mobile Ads with Applications to Advertiser Cost Discounting and Click-Through Rate Prediction

    Full text link
    In the cost per click (CPC) pricing model, an advertiser pays an ad network only when a user clicks on an ad; in turn, the ad network gives a share of that revenue to the publisher where the ad was impressed. Still, advertisers may be unsatisfied with ad networks charging them for "valueless" clicks, or so-called accidental clicks. [...] Charging advertisers for such clicks is detrimental in the long term as the advertiser may decide to run their campaigns on other ad networks. In addition, machine-learned click models trained to predict which ad will bring the highest revenue may overestimate an ad click-through rate, and as a consequence negatively impacting revenue for both the ad network and the publisher. In this work, we propose a data-driven method to detect accidental clicks from the perspective of the ad network. We collect observations of time spent by users on a large set of ad landing pages - i.e., dwell time. We notice that the majority of per-ad distributions of dwell time fit to a mixture of distributions, where each component may correspond to a particular type of clicks, the first one being accidental. We then estimate dwell time thresholds of accidental clicks from that component. Using our method to identify accidental clicks, we then propose a technique that smoothly discounts the advertiser's cost of accidental clicks at billing time. Experiments conducted on a large dataset of ads served on Yahoo mobile apps confirm that our thresholds are stable over time, and revenue loss in the short term is marginal. We also compare the performance of an existing machine-learned click model trained on all ad clicks with that of the same model trained only on non-accidental clicks. There, we observe an increase in both ad click-through rate (+3.9%) and revenue (+0.2%) on ads served by the Yahoo Gemini network when using the latter. [...

    Predicting Audio Advertisement Quality

    Full text link
    Online audio advertising is a particular form of advertising used abundantly in online music streaming services. In these platforms, which tend to host tens of thousands of unique audio advertisements (ads), providing high quality ads ensures a better user experience and results in longer user engagement. Therefore, the automatic assessment of these ads is an important step toward audio ads ranking and better audio ads creation. In this paper we propose one way to measure the quality of the audio ads using a proxy metric called Long Click Rate (LCR), which is defined by the amount of time a user engages with the follow-up display ad (that is shown while the audio ad is playing) divided by the impressions. We later focus on predicting the audio ad quality using only acoustic features such as harmony, rhythm, and timbre of the audio, extracted from the raw waveform. We discuss how the characteristics of the sound can be connected to concepts such as the clarity of the audio ad message, its trustworthiness, etc. Finally, we propose a new deep learning model for audio ad quality prediction, which outperforms the other discussed models trained on hand-crafted features. To the best of our knowledge, this is the first large-scale audio ad quality prediction study.Comment: WSDM '18 Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 9 page

    Reweighting Clicks with Dwell Time in Recommendation

    Full text link
    The click behavior is the most widely-used user positive feedback in recommendation. However, simply considering each click equally in training may suffer from clickbaits and title-content mismatching, and thus fail to precisely capture users' real satisfaction on items. Dwell time could be viewed as a high-quality quantitative indicator of user preferences on each click, while existing recommendation models do not fully explore the modeling of dwell time. In this work, we focus on reweighting clicks with dwell time in recommendation. Precisely, we first define a new behavior named valid read, which helps to select high-quality click instances for different users and items via dwell time. Next, we propose a normalized dwell time function to reweight click signals in training, which could better guide our model to provide a high-quality and efficient reading. The Click reweighting model achieves significant improvements on both offline and online evaluations in a real-world system.Comment: 5 pages, under revie
    • …
    corecore