3 research outputs found

    3D indoor positioning of UAVs with spread spectrum ultrasound and time-of-flight cameras

    Get PDF
    Este trabajo propone el uso de un sistema híbrido de posicionamiento acústico y óptico en interiores para el posicionamiento 3D preciso de los vehículos aéreos no tripulados (UAV). El módulo acústico de este sistema se basa en un esquema de Acceso Múltiple por División de Código de Tiempo (T-CDMA), en el que la emisión secuencial de cinco códigos ultrasónicos de espectro amplio se realiza para calcular la posición horizontal del vehículo siguiendo un procedimiento de multilateración 2D. El módulo óptico se basa en una cámara de Tiempo de Vuelo (TOF) que proporciona una estimación inicial de la altura del vehículo. A continuación se propone un algoritmo recursivo programado en un ordenador externo para refinar la posición estimada. Los resultados experimentales muestran que el sistema propuesto puede aumentar la precisión de un sistema exclusivamente acústico en un 70-80% en términos de error cuadrático medio de posicionamiento.This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error.• Gobierno de España y Fondos para el Desarrollo Regional Europeo. Proyectos TARSIUS (TIN2015-71564-C4-4-R) (I+D+i), REPNIN (TEC2015-71426-REDT) y SOC-PLC (TEC2015-64835-C3-2-R) (I+D+i) • Junta de Extremadura, Fondos FEDER y Fondo Social Europeo. Proyecto GR15167 y beca predoctoral 45/2016 Exp. PD16030peerReviewe

    Modeling and calibration of 3D-Time-of-Flight pulse-modulated image sensors

    No full text
    Scannerless 3D-Time-of-Flight image sensors serve to acquire three-dimensional (3D) information of objects in a scene. This contribution is devoted to modeling and calibration of scannerless 3D-Time-of-Flight image sensors based on pulse modulation. After a short description we introduce a 3D image sensor model that includes system nonlinearities due to nonideal photodetectors and signal processing circuitry. This is followed by the model defined for the nonideal light source waveform. The influence of these nonlinearities on the sensor responsivity and, hence the distance calculation will be shown. Finally, based on our findings we propose an efficient calibration procedure for the proposed distance measurement system

    High Performance CMOS Range Imaging

    Get PDF
    Diese Arbeit fokussiert sich auf die Modellierung, Charakterisierung und Optimierung von Rauschen um den Entwurf von hochperformanten CMOS-Bildsensoren im Allgemeinen und von distanzgebenden Bildsensoren im Speziellen zu unterstützen. CMOS Bildsensorik ist bekannt dafür, den CCD-Sensoren bezüglich Flexibilität überlegen zu sein, aber modifizierter Prozesse zu bedürfen um vergleichbare Leistung in Parametern wie Rauschen, Dynamik oder Empfindlichkeit zu erreichen. Rauschen wird als einer der wichtigsten Parameter erachtet, da es die erreichbare Genauigkeit maßgeblich limitiert und nicht korrigiert werden kann. Diese Thesis präsentiert einen Überblick über die weit gefächerte Theorie des Rauschens und fügt ihr eine Methodik hinzu die Rauschperformance von zeitlich abgetasteten Systemen zu schätzen. Eine Charakterisierung der verfügbaren Bauelemente des verwendeten 0:35 µm 2P4M CMOS-Prozesses wurde durchgeführt und anhand heuristischer Betrachtungen und dem Kenntnisstand der Rausch-Theorie evaluiert. Diese fundamentalen Untersuchungen werden als Grundlage erachtet, die Vorhersagbarkeit der Rauschperformance von z.B. Bildsensoren zu verbessern. Rauschquellen von Fotodetektoren wurden in der Vergangenheit erforscht, wobei viele mit der Einführung der PPD minimiert werden konnten. Üblicherweise sind die verbleibenden dominanten Rauschquellen das Resetrauschen und das Rauschen der Ausleseschaltung. Um Letzteres zu verbessern, wurde eine neuartige JFET-basierte Auslesestruktur entwickelt, welche im Vergleich zu verfügbaren Standard-MOSFETs eine um ca. Faktor 100 verbesserte Rauschperformance für niedrige Frequenzen aufweist. ToF wird als eine Schlüssel-Technologie erachtet, die neue Applikationen z.B. in Machine Vision, Automobil, Surveillance und Unterhaltungselektronik ermöglicht. Das konkurrierende CW-Verfahren ist bekannt dafür, anfällig bzgl. Störungen z.B. durch Hintergrundbestrahlung zu sein. Das PM-ToF-Prinzip wird als eine vielversprechende Methode für widrige Bedingungen erachtet, die allerdings eines schnellen Fotodetektors bedarf. Diese Arbeit trug zu zwei Generationen von LDPD basierten ToF-Bildsensoren bei und präsentiert eine alternative Implementierung des MSI-PM-ToF Verfahrens. Es wurde nachgewiesen, dass diese eine wesentlich bessere Performance bzgl. Geschwindigkeit, Linearität, Dunkelstrom und Matching bietet. Ferner bietet diese Arbeit ein nichtlineares und zeitvariantes Modell des realisierten Sensorprinzips, welches ungewünschte Phänomene wie die endliche Ladungsträgergeschwindigkeit und eine parasitäre Fotoempfindlichkeit der Speicherknoten berücksichtigt, um Großsignal-, Sensitivitäts- und Rauschperformance erforschen zu können. Es wurde gezeigt, dass das Modell gegen ein "Standard"-Modell konvergiert und die Messungen gut nachbildet. Letztlich wurde die Auswirkung dieser ungewünschten Phänomene auf die Performance der Distanzmessung präsentiert.This work is dedicated to CMOS based imaging with the emphasis on the noise modeling, characterization and optimization in order to contribute to the design of high performance imagers in general and range imagers in particular. CMOS is known to be superior to CCD due to its flexibility in terms of integration capabilities, but typically has to be enhanced to compete at parameters as for instance noise, dynamic range or spectral response. Temporal noise is an important topic, since it is one of the most crucial parameters that ultimately limits the performance and cannot be corrected. This thesis gathers the widespread theory on noise and extends the theory by a non-rigorous but potentially computing efficient algorithm to estimate noise in time sampled systems. The available devices of the 0:35 µm 2P4M CMOS process were characterized for their low-frequency noise performance and mutually compared by heuristic observations and a comparison to the state of research. These investigations set the foundation for a more rigorous treatment of noise exhibition and are thus believed to improve the predictability of the performance of e.g. image sensors. Many noise sources of CMOS APS have been investigated in the past and most of them can be minimized by usage of a PPD as a photodetector. Remaining dominant noise sources typically are the reset noise and the noise from the readout circuitry. In order to improve the latter, an alternative JFET based readout structure is proposed that was designed, manufactured and measured, proving the superior low-frequency noise performance of approximately a factor of 100 compared to standard MOSFETs. ToF is one key technology to enable new applications in e.g. machine vision, automotive, surveillance or entertainment. The competing CW principle is known to be prone to errors introduced by e.g. high ambient illuminance levels. The PM ToF principle is considered to be a promising method to supply the need for depth-map perception in harsh environmental conditions, but requires a high-speed photodetector. This work contributed to two generations of LDPD based ToF range image sensors and proposed a new approach to implement the MSI PM ToF principle. This was verified to yield a significantly faster charge transfer, better linearity, dark current and matching performance. A non-linear and time-variant model is provided that takes into account undesired phenomena such as finite charge transfer speed and a parasitic sensitivity to light when the shutters should remain OFF, to allow for investigations of large-signal characteristics, sensitivity and precision. It was demonstrated that the model converges to a standard photodetector model and properly resembles the measurements. Finally the impact of these undesired phenomena on the range measurement performance is demonstrated
    corecore