7,591 research outputs found

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Technological Spaces: An Initial Appraisal

    Get PDF
    In this paper, we propose a high level view of technological spaces (TS) and relations among these spaces. A technological space is a working context with a set of associated concepts, body of knowledge, tools, required skills, and possibilities. It is often associated to a given user community with shared know-how, educational support, common literature and even workshop and conference regular meetings. Although it is difficult to give a precise definition, some TSs can be easily identified, e.g. the XML TS, the DBMS TS, the abstract syntax TS, the meta-model (OMG/MDA) TS, etc. The purpose of our work is not to define an abstract theory of technological spaces, but to figure out how to work more efficiently by using the best possibilities of each technology. To do so, we need a basic understanding of the similarities and differences between various TSs, and also of the possible operational bridges that will allow transferring the results obtained in one TS to other TS. We hope that the presented industrial vision may help us putting forward the idea that there could be more cooperation than competition among alternative technologies. Furthermore, as the spectrum of such available technologies is rapidly broadening, the necessity to offer clear guidelines when choosing practical solutions to engineering problems is becoming a must, not only for teachers but for project leaders as well

    UML to XML-Schema Transformation: a Case Study in Managing Alternative Model Transformations in MDA

    Get PDF
    In a Model Driven Architecture (MDA) software development process, models are\ud repeatedly transformed to other models in order to finally achieve a set of models with enough details to implement a system. Generally, there are multiple ways to transform one model into another model. Alternative target models differ in their quality properties and the selection of a particular model is determined on the basis of specific requirements. Software engineers must be able to identify, compare and select the appropriate transformations within the given set of requirements. The current transformation languages used for describing and executing model transformations only provide means to specify the transformations but do not help to identify and select from the alternative transformations. In this paper we propose a process and a set of techniques for constructing a transformation space for a given transformation problem. The process uses a source model, its meta-model and the meta-model of the target as input and generates a transformation space. Every element in that space represents a transformation that produces a result that is an instance of the target meta-model. The requirements that must be fulfilled by the result are captured and represented in a quality model. We explain our approach using an illustrative example for transforming a platform independent model expressed in UML into platform specific models that represent XML schemas. A particular quality model of extensibility is presented in the paper

    Ontology technology for the development and deployment of learning technology systems - a survey

    Get PDF
    The World-Wide Web is undergoing dramatic changes at the moment. The Semantic Web is an initiative to bring meaning to the Web. The Semantic Web is based on ontology technology – a knowledge representation framework – at its core. We illustrate the importance of this evolutionary development. We survey five scenarios demonstrating different forms of applications of ontology technologies in the development and deployment of learning technology systems. Ontology technologies are highly useful to organise, personalise, and publish learning content and to discover, generate, and compose learning objects

    Designing websites with eXtensible web (xWeb) methodology

    Get PDF
    Today, eXtensible Markup Language (XML) is fast emerging as the dominant standard for storing, describing, representing and interchanging data among various enterprises systems and databases in the context of complex web enterprises information systems (EIS). Conversely, for web EIS (such as e-commerce and portals) to be successful, it is important to apply a high level, model driven solutions and meta-data vocabularies to design and implementation techniques that are capable of handling heterogonous schemas and documents. For this, we need a methodology that provides a higher level of abstraction of the domain in question with rigorously defined standards that are to be more widely understood by all stakeholders of the system. To-date, UML has proven itself as the language of choice for modeling EIS using OO techniques. With the introduction of XML Schema, which provides rich facilities for constraining and defining enterprise XML content, the combination of UML and XML technologies provide a good platform (and the flexibility) for modeling, designing and representing complex enterprise contents for building successful EIS. In this paper, we show how a layered view model coupled with a proven user interface analysis framework (WUiAM) is utilized in providing architectural construct and abstract website model (called eXtensible Web, xWeb), to model, design and implement simple, user-centred, collaborative websites at varying levels of abstraction. The uniqueness xWeb is that the model data (web user interface definitions, website data descriptions and constraints) and the web content are captured and represented at the conceptual level using views (one model) and can be deployed (multiple platform specific models) using one or more implementation models

    Engineering XML solutions using views

    Get PDF
    In industrial informatics, engineering data intensive Enterprise Information Systems (EIS) is a challenging task without abstraction and partitioning. Further, the introduction of semi-structured data (namely XML) and its rapid adaptation by the commercial and industrial systems increased the complexity for data engineering. Conversely, the introduction of OMG's MDA presents an interesting paradigm for EIS and system modelling, where a system is designed at a higher level of abstraction. This presents an interesting problem to investigate data engineering XML solutions under the MDA initiatives, where, models and framework requires higher level of abstraction. In this paper we investigate a view model that can provide layered design methodology for modelling data intensive XML solutions for EIS paradigm, with sufficient level of abstraction

    Alternative representations for visual constrainst specification in the layered view model

    Get PDF
    Extensible Markup Language (XML), with its rich set of semantics and constraints, is becoming the dominant standard for storing, describing and interchanging data among various Enterprises Information Systems (EIS) and databases. With the increased reliance on such semi-structured data and schemas, there exists a requirement to model, design, and constrain semi-structured data and the associated semantics at a higher level of abstraction than at the instance or data level. But most semi-structured schema languages lack the ability to provide higher levels of abstraction, such as visual constraints, that are easily understood by humans. Conversely, though Object-Oriented (OO) conceptual models offers the power in describing and modelling real-world data semantics, constraints and their inter-relationships in a form that is precise and comprehensible to users, they provide insufficient modelling constructs for utilizing XML schema like data descriptions and constraints. Therefore, it is interesting to investigate conceptual and schema formalisms as a means of providing higher level semantics in the context of XML-related data engineering. In this paper, we present a visual constraint specification model for an XML layered view model. First we briefly outline the view model and then provide a detailed discussion on modelling issues related to view constraint specification using two OO modelling languages, namely OMG's UML/OCL and XML Semantics (XSemantic) nets. To demonstrate our concepts, we also provide an illustrative case study example based on a real-world application
    • 

    corecore