6,444 research outputs found

    On the periodic behavior of real-time schedulers on identical multiprocessor platforms

    Full text link
    This paper is proposing a general periodicity result concerning any deterministic and memoryless scheduling algorithm (including non-work-conserving algorithms), for any context, on identical multiprocessor platforms. By context we mean the hardware architecture (uniprocessor, multicore), as well as task constraints like critical sections, precedence constraints, self-suspension, etc. Since the result is based only on the releases and deadlines, it is independent from any other parameter. Note that we do not claim that the given interval is minimal, but it is an upper bound for any cycle of any feasible schedule provided by any deterministic and memoryless scheduler

    Reconfigurable interconnects in DSM systems: a focus on context switch behavior

    Get PDF
    Recent advances in the development of reconfigurable optical interconnect technologies allow for the fabrication of low cost and run-time adaptable interconnects in large distributed shared-memory (DSM) multiprocessor machines. This can allow the use of adaptable interconnection networks that alleviate the huge bottleneck present due to the gap between the processing speed and the memory access time over the network. In this paper we have studied the scheduling of tasks by the kernel of the operating system (OS) and its influence on communication between the processing nodes of the system, focusing on the traffic generated just after a context switch. We aim to use these results as a basis to propose a potential reconfiguration of the network that could provide a significant speedup

    Scalable parallel communications

    Get PDF
    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth service to a single application); and (3) coarse grain parallelism will be able to incorporate many future improvements from related work (e.g., reduced data movement, fast TCP, fine-grain parallelism) also with near linear speed-ups

    3E: Energy-Efficient Elastic Scheduling for Independent Tasks in Heterogeneous Computing Systems

    Get PDF
    Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time. In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system workload, and makes trade-offs between energy consumption and user expected finish times. Compared with other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the system elasticity

    Estimating the Potential Speedup of Computer Vision Applications on Embedded Multiprocessors

    Full text link
    Computer vision applications constitute one of the key drivers for embedded multicore architectures. Although the number of available cores is increasing in new architectures, designing an application to maximize the utilization of the platform is still a challenge. In this sense, parallel performance prediction tools can aid developers in understanding the characteristics of an application and finding the most adequate parallelization strategy. In this work, we present a method for early parallel performance estimation on embedded multiprocessors from sequential application traces. We describe its implementation in Parana, a fast trace-driven simulator targeting OpenMP applications on the STMicroelectronics' STxP70 Application-Specific Multiprocessor (ASMP). Results for the FAST key point detector application show an error margin of less than 10% compared to the reference cycle-approximate simulator, with lower modeling effort and up to 20x faster execution time.Comment: Presented at DATE Friday Workshop on Heterogeneous Architectures and Design Methods for Embedded Image Systems (HIS 2015) (arXiv:1502.07241
    • …
    corecore