15,065 research outputs found

    Modeling and Performance Analysis of Priority Queuing Systems

    Get PDF
    The paper presents the results of modeling and analysis of data performance on systems that support QoS (Quality of Service). In order to evaluate the performance of the modeled systems used were TPN (Timed Petri Nets). Studied were mechanisms of traffic shaping systems based on PQS (Priority Queuing System). Tested was the impact of the mechanism of generating traffic using TPN. Moreover, discussed were the basic mechanisms and queuing systems occurring in QoS structures. It is shown that models can be effectively used in the modeling and analysis of the performance of computer systems

    Managing Dynamic Enterprise and Urgent Workloads on Clouds Using Layered Queuing and Historical Performance Models

    No full text
    The automatic allocation of enterprise workload to resources can be enhanced by being able to make what-if response time predictions whilst different allocations are being considered. We experimentally investigate an historical and a layered queuing performance model and show how they can provide a good level of support for a dynamic-urgent cloud environment. Using this we define, implement and experimentally investigate the effectiveness of a prediction-based cloud workload and resource management algorithm. Based on these experimental analyses we: i.) comparatively evaluate the layered queuing and historical techniques; ii.) evaluate the effectiveness of the management algorithm in different operating scenarios; and iii.) provide guidance on using prediction-based workload and resource management

    The MVA Priority Approximation

    Get PDF
    A Mean Value Analysis (MVA) approximation is presented for computing the average performance measures of closed-, open-, and mixed-type multiclass queuing networks containing Preemptive Resume (PR) and nonpreemptive Head-Of-Line (HOL) priority service centers. The approximation has essentially the same storage and computational requirements as MVA, thus allowing computationally efficient solutions of large priority queuing networks. The accuracy of the MVA approximation is systematically investigated and presented. It is shown that the approximation can compute the average performance measures of priority networks to within an accuracy of 5 percent for a large range of network parameter values. Accuracy of the method is shown to be superior to that of Sevcik's shadow approximation

    An acceleration simulation method for power law priority traffic

    Get PDF
    A method for accelerated simulation for simulated self-similar processes is proposed. This technique simplifies the simulation model and improves the efficiency by using excess packets instead of packet-by-packet source traffic for a FIFO and non-FIFO buffer scheduler. In this research is focusing on developing an equivalent model of the conventional packet buffer that can produce an output analysis (which in this case will be the steady state probability) much faster. This acceleration simulation method is a further development of the Traffic Aggregation technique, which had previously been applied to FIFO buffers only and applies the Generalized Ballot Theorem to calculate the waiting time for the low priority traffic (combined with prior work on traffic aggregation). This hybrid method is shown to provide a significant reduction in the process time, while maintaining queuing behavior in the buffer that is highly accurate when compared to results from a conventional simulatio

    A QoS-Aware Routing Protocol for Real-time Applications in Wireless Sensor Networks

    Get PDF
    The paper presents a quality of service aware routing protocol which provides low latency for high priority packets. Packets are differentiated based on their priority by applying queuing theory. Low priority packets are transferred through less energy paths. The sensor nodes interact with the pivot nodes which in turn communicate with the sink node. This protocol can be applied in monitoring context aware physical environments for critical applications.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1001.5339 by other author
    corecore