557 research outputs found

    Wireless Power Transfer in Massive MIMO Aided HetNets with User Association

    Get PDF
    This paper explores the potential of wireless power transfer (WPT) in massive multiple input multiple output (MIMO) aided heterogeneous networks (HetNets), where massive MIMO is applied in the macrocells, and users aim to harvest as much energy as possible and reduce the uplink path loss for enhancing their information transfer. By addressing the impact of massive MIMO on the user association, we compare and analyze two user association schemes. We adopt the linear maximal ratio transmission beam-forming for massive MIMO power transfer to recharge users. By deriving new statistical properties, we obtain the exact and asymptotic expressions for the average harvested energy. Then we derive the average uplink achievable rate under the harvested energy constraint.Comment: 36 pages, 11 figures, to appear in IEEE Transactions on Communication

    Modeling, Analysis and Design for Carrier Aggregation in Heterogeneous Cellular Networks

    Full text link
    Carrier aggregation (CA) and small cells are two distinct features of next-generation cellular networks. Cellular networks with small cells take on a very heterogeneous characteristic, and are often referred to as HetNets. In this paper, we introduce a load-aware model for CA-enabled \textit{multi}-band HetNets. Under this model, the impact of biasing can be more appropriately characterized; for example, it is observed that with large enough biasing, the spectral efficiency of small cells may increase while its counterpart in a fully-loaded model always decreases. Further, our analysis reveals that the peak data rate does not depend on the base station density and transmit powers; this strongly motivates other approaches e.g. CA to increase the peak data rate. Last but not least, different band deployment configurations are studied and compared. We find that with large enough small cell density, spatial reuse with small cells outperforms adding more spectrum for increasing user rate. More generally, universal cochannel deployment typically yields the largest rate; and thus a capacity loss exists in orthogonal deployment. This performance gap can be reduced by appropriately tuning the HetNet coverage distribution (e.g. by optimizing biasing factors).Comment: submitted to IEEE Transactions on Communications, Nov. 201

    Fundamentals of Heterogeneous Cellular Networks with Energy Harvesting

    Full text link
    We develop a new tractable model for K-tier heterogeneous cellular networks (HetNets), where each base station (BS) is powered solely by a self-contained energy harvesting module. The BSs across tiers differ in terms of the energy harvesting rate, energy storage capacity, transmit power and deployment density. Since a BS may not always have enough energy, it may need to be kept OFF and allowed to recharge while nearby users are served by neighboring BSs that are ON. We show that the fraction of time a k^{th} tier BS can be kept ON, termed availability \rho_k, is a fundamental metric of interest. Using tools from random walk theory, fixed point analysis and stochastic geometry, we characterize the set of K-tuples (\rho_1, \rho_2, ... \rho_K), termed the availability region, that is achievable by general uncoordinated operational strategies, where the decision to toggle the current ON/OFF state of a BS is taken independently of the other BSs. If the availability vector corresponding to the optimal system performance, e.g., in terms of rate, lies in this availability region, there is no performance loss due to the presence of unreliable energy sources. As a part of our analysis, we model the temporal dynamics of the energy level at each BS as a birth-death process, derive the energy utilization rate, and use hitting/stopping time analysis to prove that there exists a fundamental limit on \rho_k that cannot be surpassed by any uncoordinated strategy.Comment: submitted to IEEE Transactions on Wireless Communications, July 201

    Analysis of LTE-A Heterogeneous Networks with SIR-based Cell Association and Stochastic Geometry

    Full text link
    This paper provides an analytical framework to characterize the performance of Heterogeneous Networks (HetNets), where the positions of base stations and users are modeled by spatial Poisson Point Processes (stochastic geometry). We have been able to formally derive outage probability, rate coverage probability, and mean user bit-rate when a frequency reuse of KK and a novel prioritized SIR-based cell association scheme are applied. A simulation approach has been adopted in order to validate our analytical model; theoretical results are in good agreement with simulation ones. The results obtained highlight that the adopted cell association technique allows very low outage probability and the fulfillment of certain bit-rate requirements by means of adequate selection of reuse factor and micro cell density. This analytical model can be adopted by network operators to gain insights on cell planning. Finally, the performance of our SIR-based cell association scheme has been validated through comparisons with other schemes in literature.Comment: Paper accepted to appear on the Journal of Communication Networks (accepted on November 28, 2017); 15 page
    • …
    corecore