5 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Auction-Based Coopetition between LTE Unlicensed and Wi-Fi

    Full text link
    Motivated by the recent efforts in extending LTE to the unlicensed spectrum, we propose a novel spectrum sharing framework for the coopetition (i.e., cooperation and competition) between LTE and Wi-Fi in the unlicensed band. Basically, the LTE network can choose to work in one of the two modes: in the competition mode, it randomly accesses an unlicensed channel, and interferes with the Wi-Fi access point using the same channel; in the cooperation mode, it delivers traffic for the Wi-Fi users in exchange for the exclusive access of the corresponding channel. Because the LTE network works in an interference-free manner in the cooperation mode, it can achieve a much larger data rate than that in the competition mode, which allows it to effectively serve both its own users and the Wi-Fi users. We design a second-price reverse auction mechanism, which enables the LTE provider and the Wi-Fi access point owners (APOs) to effectively negotiate the operation mode. Specifically, the LTE provider is the auctioneer (buyer), and the APOs are the bidders (sellers) who compete to sell their channel access opportunities to the LTE provider. In Stage I of the auction, the LTE provider announces a reserve rate. In Stage II of the auction, the APOs submit their bids. We show that the auction involves allocative externalities, i.e., the cooperation between the LTE provider and one APO benefits other APOs who are not directly involved in this cooperation. As a result, a particular APO's willingness to cooperate is affected by its belief about other APOs' willingness to cooperate. This makes our analysis much more challenging than that of the conventional second-price auction, where bidding truthfully is a weakly dominant strategy. We show that the APOs have a unique form of the equilibrium bidding strategies in Stage II, based on which we analyze the LTE provider's optimal reserve rate in Stage I.Comment: 32 page

    Radio Resource Management in LTE-Advanced Systems with Carrier Aggregation

    Get PDF
    In order to meet the ever-increasing demand for wireless broadband services from fast growing mobile users, the Long Term Evolution -Advanced (LTE-A) standard has been proposed to effectively improve the system capacity and the spectral efficiency for the fourth-generation (4G) wireless mobile communications. Many advanced techniques are incorporated in LTE-A systems to jointly ameliorate system performance, among which Carrier Aggregation (CA) is considered as one of the most promising improvements that has profound significance even in the upcoming 5G era. Component carriers (CCs) from various portions of the spectrum are logically concatenated to form a much larger virtual band, resulting in remarkable boosted system capacity and user data throughput. However, the unique features of CA have posed many emerging challenges as well as span-new opportunities on the Radio Resource Management (RRM) in the LTE-A systems. First, although multi-CC transmission can bring higher throughput, it may incur more intensive interference for each CC and more power consumption for users. Thus the performance gain of CA under different conditions needs fully evaluating. Besides, as CA offers flexible CC selection and cross-CC load balancing and scheduling, enhanced RRM strategies should be designed to further optimize the overall resource utilization. In addition, CA enables the frequency reuse on a CC resolution, adding another dimension to inter-cell interference management in heterogeneous networks (HetNets). New interference management mechanisms should be designed to take the advantage of CA. Last but not least, CA empowers the LTE-A systems to aggregate the licensed spectrum with the unlicensed spectrum, thus offering a capacity surge. Yet how to balance the traffic between licensed and unlicensed spectrum and how to achieve a harmony coexistence with other unlicensed systems are still open issues. To this end, the dissertation emphasizes on the new functionalities introduced by CA to optimize the RRM performance in LTE-A systems. The main objectives are four-fold: 1) to fully evaluate the benefits of CA from different perspectives under different conditions via both theoretical analysis and simulations; 2) to design cross-layer CC selection, packet scheduling and power control strategies to optimize the target performance; 3) to analytically model the interference of HetNets with CA and propose dynamic interference mitigation strategies in a CA scenario; and 4) to investigate the impact of LTE transmissions on other unlicensed systems and develop enhanced RRM mechanisms for harmony coexistence. To achieve these objectives, we first analyze the benefits of CA via investigating the user accommodation capabilities of the system in the downlink admission control process. The LTE-A users with CA capabilities and the legacy LTE users are considered. Analytical models are developed to derive the maximum number of users that can be admitted into the system given the user QoS requirements and traffic features. The results show that with only a slightly higher spectrum utilization, the system can admit as much as twice LTE-A users than LTE users when the user traffic is bursty. Second, we study the RRM in the single-tier LTE-A system and propose a cross-layer dynamic CC selection and power control strategy for uplink CA. Specifically, the uplink power offset effects caused by multi-CC transmission are considered. An estimation method for user bandwidth allocation is developed and a combinatorial optimization problem is formulated to improve the user throughput via maximizing the user power utilization. Third, we explore the interference management problem in multi-tier HetNets considering the CC-resolution frequency reuse. An analytical model is devised to capture the randomness behaviors of the femtocells exploiting the stochastic geometry theory. The interaction between the base stations of different tiers are formulated into a two-level Stackelberg game, and a backward induction method is exploited to obtain the Nash equilibrium. Last, we focus on the mechanism design for licensed and unlicensed spectrum aggregation. An LTE MAC protocol on unlicensed spectrum is developed considering the coexistence with the Wi-Fi systems. The protocol captures the asynchronous nature of Wi-Fi transmissions in time-slotted LTE frame structure and strike a tunable tradeoff between LTE and Wi-Fi performance. Analytical analysis is also presented to reveal the essential relation among different parameters of the two systems. In summary, the dissertation aims at fully evaluating the benefits of CA in different scenarios and making full use of the benefits to develop efficient and effective RRM strategies for better LTE-Advanced system performance

    Characterization and Modelling of Scattered Wireless Channel at 60 GHZ in an Underground Mine Gallery

    Get PDF
    RÉSUMÉ Depuis plus d’une décennie, les applications du système de communication sans fil sont exigeantes et augmentent rapidement pour fournir des services multimédias au public. De nos jours, la recherche se concentre sur la conception de communication sans fil à haute vitesse (i.e., 1 Gbps) en particulier dans des zones denses telles que des salles de conférence, des centres commerciaux,des stades et des lieux d’événements publics ouverts. Des réseaux locaux sans fil (WLAN) et des réseaux cellulaires utilisent des hauts potentiels pour réussir les haut débit de données en utilisant différentes technologies de pointe telles que la coexistence entre l’évaluation à long terme non autorisé (LTE-U) et les canaux Wi-Fi. En outre, la faisabilité d’utiliser le spectre à haute fréquence (i.e,> 6 GHz), une couche physique à 60 GHz pour les réseaux denses sont mis en évidence lorsque des liens de communication à courte distance (par exemple, <10 m) sont nécessaires aussi bien dans WLAN (i.e, WiGig) et le réseau cellulaire (i.e, 5G petite cellule). Cependant, les applications à 60 GHz se dirigent vers la communication sans fil souterraine pour une meilleure géolocalisation, les applications haute définition (HD) de streaming vidéo dans une galerie plus grande longueur (i.e,> 100 m) en raison de sa capacité de formation de faisceau et de plus grande capacité. Pour aider le concepteur du système, il est nécessaire de connaître les informations de propagation du canal sans fil diffusé puisque le plancher de la galerie, le plafond et le mur ont différentes rugosités (i.e.,> 5 mm). Cette thèse présente les résultats de la caractérisation du canal sans fil et la modélisation statistique à 60 GHz d’une mine souterraine à CANMET ayant des galeries dont la profondeur varie entre 40 m et 70 m. Depuis plus d’une décennie, les applications du système de communication sans fil sont exigeantes et augmentent rapidement pour fournir des services multimédias au public. Les résultats montrent que l’écart angulaire de la propagation par trajets multiples est inversement proportionnel à la distance entre l’émetteur et le récepteur. Un phénomène de dispersion solide est également observé dans le canal en observant l’angle de propagation des différents trajets. Des polarisations horizontales (H) et verticales (V) ont été utilisées puisque les diagrammes de rayonnement sont différents et peuvent fournir des comportements de dispersion temporelle différents. Les résultats montrent que l’antenne à polarisation verticale fournit un plus grand nombre de trajets multiples par rapport à polarisation horizontale et une valeur plus élevée de moyenne quadratique (RMS) par rapport à une horizontale. Par ailleurs, les mesures du coefficient de réflexion ont été effectuées pour étudier l’effet de dispersion de la surface rugueuse. Étant donné qu’aucun effet de regroupement sur le canal multitrajets n’a été observé, une approche de modélisation statistique a été considérée en tenant compte des différents trajets parcourus et leur amplitude. Par insertion des paramètres de hauteur de la surface de mesure, les modèles de diffusion connus ont également été analysées pour permettre la mise en oeuvre d’une approche de modélisation du canal dispersif.----------ABSTRACT More than a decade, there is a surge in demand and development of wireless communication system applications to deliver multimedia services. Nowadays the research is focused on the design of high speed (i.e., 1 Gbps) wireless system particularly in dense areas such as conference room, shopping mall, stadium and open public events. Wireless local area network (WLAN) and cellular network are making high potential approaches to fulfill high data rate by using different advanced technologies such as coexistence between Long Term Evaluation Unlicensed (LTE-U) and Wi-Fi Wireless channels. Moreover, the feasibility to use high-frequency spectrum (i.e., > 6 GHz), a physical layer research at 60 GHz for dense networks are highlighted where short-distance communication links (i.e., 100 m) due to its beamforming capability and higher capacity. To assist the system designer, it is necessary to know the scattered wireless channel propagation information since the gallery floor, ceiling and walls consist of the different magnitude of the roughness (i.e., > 5 mm). This thesis presents the results of wireless channel characterization and statistical modeling at 60 GHz where the measurements were carried out in CANMET underground mine (40 m and 70 m gallery depths). Several measurements were conducted with different antenna configurations and polarizations. Results show that angular and temporal dispersion are proportional to the mine gallery dimensions. Results also show that the angular spread of the multipath is inversely proportional to the transmitter receiver separation distance. A strong scattering phenomenon is also observed in the channel by observing multipath angle of arrivals. The use of Horizontal (H) and vertical (V) polarizations were performed due to its different radiation pattern can provide a different temporal dispersion behavior. The results show that a vertically polarized antenna provides a lower value of path loss exponent and a higher value of root mean square (RMS) delay spread compared to a horizontal one. Since no clustering effect was observed, a statistical modeling approach with the multipath arrivals and amplitudes was considered. In addition, the reflection coefficient measurements were conducted to investigate the scattering effect from the rough surface. By inserting measured surface height parameters, the known scattering models were also analyzed to have an idea to implement a modeling approach of the scattered channel
    corecore