274 research outputs found

    Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

    Full text link
    Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given SINR, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.Comment: IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550 - 560, Apr. 201

    Distance Distributions for Real Cellular Networks

    Full text link
    This paper presents the general distribution for the distance between a mobile user and any base station (BS). We show that a random variable proportional to the distance squared is Gamma distributed. In the case of the nearest BS, it can be reduced to the well established result of the distance being Rayleigh distributed. We validate our results using a random node simulation and real Vodafone 3G network data, and go on to show how the distribution is tractable by deriving the average aggregate interference power.Comment: 2 pages, 1 figure, IEEE Conference on Computer Communications (INFOCOM

    Analysis of Coverage and Area Spectral Efficiency under Various Design Parameters of Heterogeneous Cellular Network

    Get PDF
    As day by day the population is increasing, the use of mobile phones and different applications is increasing which requires high data rate for transmission. Homogeneous cellular network cannot fulfill the demand of mobile users, so creating a heterogeneous cellular network (HCN) is a better choice for higher coverage and capacity to fulfil the increasing demand of upcoming 5G and ultra-dense cellular networks. In this research, the impact of antenna heights and gains under varying pico to macro base stations density ratio from 2G to 5G and beyond on two-tier heterogeneous cellular network has been analyzed for obtaining optimum results of coverage and area spectral efficiency. Furthermore, how the association of UEs affects the coverage and ASE while changing the BSs antenna heights and gains has been explored for the two-tier HCN network model. The simulation results show that by considering the maximum macro BS antenna height, pico BS antenna height equal to user equipment (UE) antenna height and unity gains for both macro and pico tiers, the optimum coverage and area spectral efficiency (ASE) for a two-tier fully loaded heterogeneous cellular network can be obtained

    On Association Cells in Random Heterogeneous Networks

    Full text link
    Characterizing user to access point (AP) association strategies in heterogeneous cellular networks (HetNets) is critical for their performance analysis, as it directly influences the load across the network. In this letter, we introduce and analyze a class of association strategies, which we term stationary association, and the resulting association cells. For random HetNets, where APs are distributed according to a stationary point process, the area of the resulting association cells are shown to be the marks of the corresponding point process. Addressing the need of quantifying the load experienced by a typical user, a "Feller-paradox" like relationship is established between the area of the association cell containing origin and that of a typical association cell. For the specific case of Poisson point process and max power/SINR association, the mean association area of each tier is derived and shown to increase with channel gain variance and decrease in the path loss exponents of the corresponding tier

    A case study on regularity in cellular network deployment

    Full text link
    This paper aims to validate the β\beta-Ginibre point process as a model for the distribution of base station locations in a cellular network. The β\beta-Ginibre is a repulsive point process in which repulsion is controlled by the β\beta parameter. When β\beta tends to zero, the point process converges in law towards a Poisson point process. If β\beta equals to one it becomes a Ginibre point process. Simulations on real data collected in Paris (France) show that base station locations can be fitted with a β\beta-Ginibre point process. Moreover we prove that their superposition tends to a Poisson point process as it can be seen from real data. Qualitative interpretations on deployment strategies are derived from the model fitting of the raw data
    corecore