7,926 research outputs found

    Developing a cellular automata model of urban growth to inform spatial policy for flood mitigation:A case study in Kampala, Uganda

    Get PDF
    Urban growth may intensify local flooding problems. Understanding the spatially explicit flood consequences of possible future land cover patterns contributes to inform policy for mitigating these impacts. A cellular automata model has been coupled with the openLISEM integrated flood modeling tool to simulate scenarios of urban growth and their consequent flood; the urban growth model makes use of a continuous response variable (the percentage of built-up area) and a spatially explicit simulation of supply for urban development. The models were calibrated for Upper Lubigi (Kampala, Uganda), a sub-catchment that experienced rapid urban growth during 2004–2010; this data scarce environment was chosen in part to test the model's performance with data inputs that introduced important uncertainty. The cellular automata model was validated in Nalukolongo (Kampala, Uganda). The calibrated modeling ensemble was then used to simulate urban growth scenarios of Upper Lubigi for 2020. Two scenarios, trend conditions and a policy of strict protection of existing wetlands, were simulated. The results of simulated scenarios for Upper Lubigi show how a policy of only protecting wetlands is ineffective; further, a substantial increase of flood impacts, attributable to urban growth, should be expected by 2020. The coupled models are operational with regard to the simulation of dynamic feedbacks between flood and suitability for urban growth. The tool proved useful in generating meaningful scenarios of land cover change and comparing their policy drivers as flood mitigation measures in a data scarce environment

    Perancangan Model Spasial Kawasan Permukiman Perkotaan Berbasis Cellular Automata Di Kabupaten Minahasa Selatan

    Get PDF
    The purpose of this research is to design a spatial model of urban settlement areas using the Cellular Automata approach in South Minahasa Regency. The research location is located in a sub-district in South Minahasa Regency which has a delineation of urban settlement areas namely Tumpaan, Tareran, Amurang Timur, Amurang, Amurang Barat, Tenga and Sinonsayang Districts, covering an area of ​​656.6 Km2. Primary data collection methods are: Field observation and distribution of questionnaires to academics, government and local communities. Secondary data collection methods, namely: literature review and data request survey. The method of analysis is quantitative analysis using AHP and spatial analysis based on Cellular Automata. The results of the research show that the direction of modeling starts towards the east and south of the research location. Urban residential land in the research location experienced a growth of 4.19% from the previous year in 2014 covering an area of ​​11.96 Km2 increasing by 15.26 Km2 to 27.22 Km2 in 2034. The modeling results also show that in the 2014-2019 range is the range in which growth the highest settlement that occurred was 5.7%. The development of settlements resulted in the conversion of several land uses, namely alang-alang land and mixed gardens. Urban settlements in Tareran District are settlements that experience greater growth among settlements in other districts with a percentage reaching 9.1%

    Integrated urban evolutionary modeling

    Get PDF
    Cellular automata models have proved rather popular as frameworks for simulating the physical growth of cities. Yet their brief history has been marked by a lack of application to real policy contexts, notwithstanding their obvious relevance to topical problems such as urban sprawl. Traditional urban models which emphasize transportation and demography continue to prevail despite their limitations in simulating realistic urban dynamics. To make progress, it is necessary to link CA models to these more traditional forms, focusing on the explicit simulation of the socio-economic attributes of land use activities as well as spatial interaction. There are several ways of tackling this but all are based on integration using various forms of strong and loose coupling which enable generically different models to be connected. Such integration covers many different features of urban simulation from data and software integration to internet operation, from interposing demand with the supply of urban land to enabling growth, location, and distributive mechanisms within such models to be reconciled. Here we will focus on developin

    Linking Climate Change and Socio-economic Impact for Long-term Urban Growth in Three Mega-cities

    Get PDF
    Urbanization has become a global trend under the impact of population growth, socio-economic development, and globalization. However, the interactions between climate change and urban growth in the context of economic geography are unclear due to missing links in between the recent planning megacities. This study aims to conduct a multi-temporal change analysis of land use and land cover in New York City, City of London, and Beijing using a cellular automata-based Markov chain model collaborating with fuzzy set theory and multi-criteria evaluation to predict the city\u27s future land use changes for 2030 and 2050 under the background of climate change. To determine future natural forcing impacts on land use in these megacities, the study highlighted the need for integrating spatiotemporal modeling analyses, such as Statistical Downscale Modeling (SDSM) driven by climate change, and geospatial intelligence techniques, such as remote sensing and geographical information system, in support of urban growth assessment. These SDSM findings along with current land use policies and socio-economic impact were included as either factors or constraints in a cellular automata-based Markov Chain model to simulate and predict land use changes in megacities for 2030 and 2050. Urban expansion is expected in these megacities given the assumption of stationarity in urban growth process, although climate change impacts the land use changes and management. More land use protection should be addressed in order to alleviate the impact of climate change

    Constructing Fuzzy for Socio Economic Urban Growth Dynamic In Surabaya Based on GIS

    Get PDF
    Urban modeling is an important tool for efficient policy designing in a big city. Surabaya, a big city are now recognized as complex systems through which nonlinear and dynamic processes occur. The paper present a methodological framework for urban modeling from socio economic point of view, which suggested framework incorporates a set of fuzzy systems. In this case, the variable consist of manufacture, hospital, school and shopping centre. Combining with spatial analysis in GIS, the result is a dynamic model was shown to be capable of replicating the trends and characteristics of an urban environment, in this case the city of Surabaya

    CAST – City analysis simulation tool: an integrated model of land use, population, transport and economics

    Get PDF
    The paper reports on research into city modelling based on principles of Science of Complexity. It focuses on integration of major processes in cities, such as economics, land use, transport and population movement. This is achieved using an extended Cellular Automata model, which allows cells to form networks, and operate on individual financial budgets. There are 22 cell types with individual processes in them. The formation of networks is based on supply and demand mechanisms for products, skills, accommodation, and services. Demand for transport is obtained as an emergent property of the system resulting from the network connectivity and relevant economic mechanisms. Population movement is a consequence of mechanisms in the housing and skill markets. Income and expenditure of cells are self-regulated through market mechanisms and changing patterns of land use are a consequence of collective interaction of all mechanisms in the model, which are integrated through emergence
    • …
    corecore