3,113 research outputs found

    Game-Theoretic Analysis of Cyber Deception: Evidence-Based Strategies and Dynamic Risk Mitigation

    Full text link
    Deception is a technique to mislead human or computer systems by manipulating beliefs and information. For the applications of cyber deception, non-cooperative games become a natural choice of models to capture the adversarial interactions between the players and quantitatively characterizes the conflicting incentives and strategic responses. In this chapter, we provide an overview of deception games in three different environments and extend the baseline signaling game models to include evidence through side-channel knowledge acquisition to capture the information asymmetry, dynamics, and strategic behaviors of deception. We analyze the deception in binary information space based on a signaling game framework with a detector that gives off probabilistic evidence of the deception when the sender acts deceptively. We then focus on a class of continuous one-dimensional information space and take into account the cost of deception in the signaling game. We finally explore the multi-stage incomplete-information Bayesian game model for defensive deception for advanced persistent threats (APTs). We use the perfect Bayesian Nash equilibrium (PBNE) as the solution concept for the deception games and analyze the strategic equilibrium behaviors for both the deceivers and the deceivees.Comment: arXiv admin note: text overlap with arXiv:1810.0075

    A Game-Theoretic Taxonomy and Survey of Defensive Deception for Cybersecurity and Privacy

    Full text link
    Cyberattacks on both databases and critical infrastructure have threatened public and private sectors. Ubiquitous tracking and wearable computing have infringed upon privacy. Advocates and engineers have recently proposed using defensive deception as a means to leverage the information asymmetry typically enjoyed by attackers as a tool for defenders. The term deception, however, has been employed broadly and with a variety of meanings. In this paper, we survey 24 articles from 2008-2018 that use game theory to model defensive deception for cybersecurity and privacy. Then we propose a taxonomy that defines six types of deception: perturbation, moving target defense, obfuscation, mixing, honey-x, and attacker engagement. These types are delineated by their information structures, agents, actions, and duration: precisely concepts captured by game theory. Our aims are to rigorously define types of defensive deception, to capture a snapshot of the state of the literature, to provide a menu of models which can be used for applied research, and to identify promising areas for future work. Our taxonomy provides a systematic foundation for understanding different types of defensive deception commonly encountered in cybersecurity and privacy.Comment: To Appear in ACM Cumputing Surveys (CSUR

    Reward-Based Deception with Cognitive Bias

    Full text link
    Deception plays a key role in adversarial or strategic interactions for the purpose of self-defence and survival. This paper introduces a general framework and solution to address deception. Most existing approaches for deception consider obfuscating crucial information to rational adversaries with abundant memory and computation resources. In this paper, we consider deceiving adversaries with bounded rationality and in terms of expected rewards. This problem is commonly encountered in many applications especially involving human adversaries. Leveraging the cognitive bias of humans in reward evaluation under stochastic outcomes, we introduce a framework to optimally assign resources of a limited quantity to optimally defend against human adversaries. Modeling such cognitive biases follows the so-called prospect theory from behavioral psychology literature. Then we formulate the resource allocation problem as a signomial program to minimize the defender's cost in an environment modeled as a Markov decision process. We use police patrol hour assignment as an illustrative example and provide detailed simulation results based on real-world data.Comment: Submitted to CDC 201

    Cyber-Physical Systems Security: a Systematic Mapping Study

    Full text link
    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds some light on how security is actually addressed when dealing with cyber-physical systems. The provided systematic map of 118 selected studies is based on, for instance, application fields, various system components, related algorithms and models, attacks characteristics and defense strategies. It presents a powerful comparison framework for existing and future research on this hot topic, important for both industry and academia.Comment: arXiv admin note: text overlap with arXiv:1205.5073 by other author

    Deception by Design: Evidence-Based Signaling Games for Network Defense

    Full text link
    Deception plays a critical role in the financial industry, online markets, national defense, and countless other areas. Understanding and harnessing deception - especially in cyberspace - is both crucial and difficult. Recent work in this area has used game theory to study the roles of incentives and rational behavior. Building upon this work, we employ a game-theoretic model for the purpose of mechanism design. Specifically, we study a defensive use of deception: implementation of honeypots for network defense. How does the design problem change when an adversary develops the ability to detect honeypots? We analyze two models: cheap-talk games and an augmented version of those games that we call cheap-talk games with evidence, in which the receiver can detect deception with some probability. Our first contribution is this new model for deceptive interactions. We show that the model includes traditional signaling games and complete information games as special cases. We also demonstrate numerically that deception detection sometimes eliminate pure-strategy equilibria. Finally, we present the surprising result that the utility of a deceptive defender can sometimes increase when an adversary develops the ability to detect deception. These results apply concretely to network defense. They are also general enough for the large and critical body of strategic interactions that involve deception.Comment: To be presented at Workshop on the Economics of Information Security (WEIS) 2015, Delft University of Technology, The Netherland

    A Game-Theoretic Foundation of Deception: Knowledge Acquisition and Fundamental Limits

    Full text link
    Deception is a technique to mislead human or computer systems by manipulating beliefs and information. Successful deception is characterized by the information-asymmetric, dynamic, and strategic behaviors of the deceiver and the deceivee. This paper proposes a game-theoretic framework of a deception game to model the strategic behaviors of the deceiver and deceivee and construct strategies for both attacks and defenses over a continuous one-dimensional information space. We use the signaling game model to capture the information-asymmetric, dynamic, and strategic behaviors of deceptions by modeling the deceiver as a privately-informed player called sender and the deceivee as an uninformed player called receiver. We characterize perfect Bayesian Nash equilibrium (PBNE) solution of the game and study the deceivability. We highlight the condition of deceivee's knowledge enhancement through evidences to maintain the equilibrium and analyze the impacts of direct deception costs and players' conflict of interest on the deceivability

    Proactive Defense Against Physical Denial of Service Attacks using Poisson Signaling Games

    Full text link
    While the Internet of things (IoT) promises to improve areas such as energy efficiency, health care, and transportation, it is highly vulnerable to cyberattacks. In particular, distributed denial-of-service (DDoS) attacks overload the bandwidth of a server. But many IoT devices form part of cyber-physical systems (CPS). Therefore, they can be used to launch "physical" denial-of-service attacks (PDoS) in which IoT devices overflow the "physical bandwidth" of a CPS. In this paper, we quantify the population-based risk to a group of IoT devices targeted by malware for a PDoS attack. In order to model the recruitment of bots, we develop a "Poisson signaling game," a signaling game with an unknown number of receivers, which have varying abilities to detect deception. Then we use a version of this game to analyze two mechanisms (legal and economic) to deter botnet recruitment. Equilibrium results indicate that 1) defenders can bound botnet activity, and 2) legislating a minimum level of security has only a limited effect, while incentivizing active defense can decrease botnet activity arbitrarily. This work provides a quantitative foundation for proactive PDoS defense.Comment: 2017 Conference on Decision and Game Theory for Security (GameSec2017). arXiv admin note: text overlap with arXiv:1703.0523

    A Games-in-Games Approach to Mosaic Command and Control Design of Dynamic Network-of-Networks for Secure and Resilient Multi-Domain Operations

    Full text link
    This paper presents a games-in-games approach to provide design guidelines for mosaic command and control that enables the secure and resilient multi-domain operations. Under the mosaic design, pieces or agents in the network are equipped with flexible interoperability and the capability of self-adaptability, self-healing, and resiliency so that they can reconfigure their responses to achieve the global mission in spite of failures of nodes and links in the adversarial environment. The proposed games-in-games approach provides a system-of-systems science for mosaic distributed design of large-scale systems. Specifically, the framework integrates three layers of design for each agent including strategic layer, tactical layer, and mission layer. Each layer in the established model corresponds to a game of a different scale that enables the integration of threat models and achieve self-mitigation and resilience capabilities. The solution concept of the developed multi-layer multi-scale mosaic design is characterized by Gestalt Nash equilibrium (GNE) which considers the interactions between agents across different layers. The developed approach is applicable to modern battlefield networks which are composed of heterogeneous assets that access highly diverse and dynamic information sources over multiple domains. By leveraging mosaic design principles, we can achieve the desired operational goals of deployed networks in a case study and ensure connectivity among entities for the exchange of information to accomplish the mission.Comment: 10 page

    iSTRICT: An Interdependent Strategic Trust Mechanism for the Cloud-Enabled Internet of Controlled Things

    Full text link
    The cloud-enabled Internet of controlled things (IoCT) envisions a network of sensors, controllers, and actuators connected through a local cloud in order to intelligently control physical devices. Because cloud services are vulnerable to advanced persistent threats (APTs), each device in the IoCT must strategically decide whether to trust cloud services that may be compromised. In this paper, we present iSTRICT, an interdependent strategic trust mechanism for the cloud-enabled IoCT. iSTRICT is composed of three interdependent layers. In the cloud layer, iSTRICT uses FlipIt games to conceptualize APTs. In the communication layer, it captures the interaction between devices and the cloud using signaling games. In the physical layer, iSTRICT uses optimal control to quantify the utilities in the higher level games. Best response dynamics link the three layers in an overall "game-of-games," for which the outcome is captured by a concept called Gestalt Nash equilibrium (GNE). We prove the existence of a GNE under a set of natural assumptions and develop an adaptive algorithm to iteratively compute the equilibrium. Finally, we apply iSTRICT to trust management for autonomous vehicles that rely on measurements from remote sources. We show that strategic trust in the communication layer achieves a worst-case probability of compromise for any attack and defense costs in the cyber layer.Comment: To appear in IEEE Transactions on Information Forensics and Securit

    Dynamic Games for Secure and Resilient Control System Design

    Full text link
    Modern control systems are featured by their hierarchical structure composing of cyber, physical, and human layers. The intricate dependencies among multiple layers and units of modern control systems require an integrated framework to address cross-layer design issues related to security and resilience challenges. To this end, game theory provides a bottom-up modeling paradigm to capture the strategic interactions among multiple components of the complex system and enables a holistic view to understand and design cyber-physical-human control systems. In this review, we first provide a multi-layer perspective toward increasingly complex and integrated control systems and then introduce several variants of dynamic games for modeling different layers of control systems. We present game-theoretic methods for understanding the fundamental tradeoffs of robustness, security, and resilience and developing a clean-slate cross-layer approach to enhance the system performance in various adversarial environments. This review also includes three quintessential research problems that represent three research directions where dynamic game approaches can bridge between multiple research areas and make significant contributions to the design of modern control systems. The paper is concluded with a discussion on emerging areas of research that crosscut dynamic games and control systems.Comment: 12 pages, 8 figure
    • …
    corecore