683 research outputs found

    Bijective Mappings Of Meshes With Boundary And The Degree In Mesh Processing

    Full text link
    This paper introduces three sets of sufficient conditions, for generating bijective simplicial mappings of manifold meshes. A necessary condition for a simplicial mapping of a mesh to be injective is that it either maintains the orientation of all elements or flips all the elements. However, these conditions are known to be insufficient for injectivity of a simplicial map. In this paper we provide additional simple conditions that, together with the above mentioned necessary conditions guarantee injectivity of the simplicial map. The first set of conditions generalizes classical global inversion theorems to the mesh (piecewise-linear) case. That is, proves that in case the boundary simplicial map is bijective and the necessary condition holds then the map is injective and onto the target domain. The second set of conditions is concerned with mapping of a mesh to a polytope and replaces the (often hard) requirement of a bijective boundary map with a collection of linear constraints and guarantees that the resulting map is injective over the interior of the mesh and onto. These linear conditions provide a practical tool for optimizing a map of the mesh onto a given polytope while allowing the boundary map to adjust freely and keeping the injectivity property in the interior of the mesh. The third set of conditions adds to the second set the requirement that the boundary maps are orientation preserving as-well (with a proper definition of boundary map orientation). This set of conditions guarantees that the map is injective on the boundary of the mesh as-well as its interior. Several experiments using the sufficient conditions are shown for mapping triangular meshes. A secondary goal of this paper is to advocate and develop the tool of degree in the context of mesh processing

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Tetrisation of triangular meshes and its application in shape blending

    Full text link
    The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile technique for morphing, surface modelling, and mesh editing. We discuss an improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh in 3D space, we introduce a method to associate a tetrahedral structure, which encodes the geometry of the original mesh. 2. We use a Lie algebra based method to interpolate local transformation, which provides better handling of rotation with large angle. 3. We propose a new error function to compile local transformations into a global piecewise linear map, which is rotation invariant and easy to minimise. We implemented a shape blender based on our algorithm and its MIT licensed source code is available online

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral

    Interactive design exploration for constrained meshes

    Get PDF
    In architectural design, surface shapes are commonly subject to geometric constraints imposed by material, fabrication or assembly. Rationalization algorithms can convert a freeform design into a form feasible for production, but often require design modifications that might not comply with the design intent. In addition, they only offer limited support for exploring alternative feasible shapes, due to the high complexity of the optimization algorithm. We address these shortcomings and present a computational framework for interactive shape exploration of discrete geometric structures in the context of freeform architectural design. Our method is formulated as a mesh optimization subject to shape constraints. Our formulation can enforce soft constraints and hard constraints at the same time, and handles equality constraints and inequality constraints in a unified way. We propose a novel numerical solver that splits the optimization into a sequence of simple subproblems that can be solved efficiently and accurately. Based on this algorithm, we develop a system that allows the user to explore designs satisfying geometric constraints. Our system offers full control over the exploration process, by providing direct access to the specification of the design space. At the same time, the complexity of the underlying optimization is hidden from the user, who communicates with the system through intuitive interfaces
    • …
    corecore