855,542 research outputs found

    Modeling of Traceability Information System for Material Flow Control Data.

    Get PDF
    This paper focuses on data modeling for traceability of material/work flow in information layer of manufacturing control system. The model is able to trace all associated data throughout the product manufacturing from order to final product. Dynamic data processing of Quality and Purchase activities are considered in data modeling as well as Order and Operation base on lots particulars. The modeling consisted of four steps and integrated as one final model. Entity-Relationships Modeling as data modeling methodology is proposed. The model is reengineered with Toad Data Modeler software in physical modeling step. The developed model promises to handle fundamental issues of a traceability system effectively. It supports for customization and real-time control of material in flow in all levels of manufacturing processes. Through enhanced visibility and dynamic store/retrieval of data, all traceability usages and applications is responded. Designed solution is initially applicable as reference data model in identical lot-base traceability system

    Evaluation of the HARDMAN comparability methodology for manpower, personnel and training

    Get PDF
    The methodology evaluation and recommendation are part of an effort to improve Hardware versus Manpower (HARDMAN) methodology for projecting manpower, personnel, and training (MPT) to support new acquisition. Several different validity tests are employed to evaluate the methodology. The methodology conforms fairly well with both the MPT user needs and other accepted manpower modeling techniques. Audits of three completed HARDMAN applications reveal only a small number of potential problem areas compared to the total number of issues investigated. The reliability study results conform well with the problem areas uncovered through the audits. The results of the accuracy studies suggest that the manpower life-cycle cost component is only marginally sensitive to changes in other related cost variables. Even with some minor problems, the methodology seem sound and has good near term utility to the Army. Recommendations are provided to firm up the problem areas revealed through the evaluation

    GAMETH A Process Modeling Approach to Identify and Locate Crucial Knowledge.

    Get PDF
    In a knowledge management initiative, one of the main issues is to identify and locate which knowledge to capitalize on. To deal with this issue, a General Analysis Methodology so called GAMETH® has been developed. In this article, we describe the postulates, the guiding principles, and the main phases, which constitute the basis of GAMETH® Framework. Notably, we emphasize the process modeling approach that is inherent to the second phase of the methodology. This process modeling approach supports the effective capability to locate and identify “crucial knowledge”. Furthermore, we present lessons learned from two case studies.Process modeling; Knowledge Management (KM); GAMETH; Identifying and Locating Company’s Crucial Knowledge; Crucial knowledge;

    Aeroelastic modeling of rotor blades with spanwise variable elastic axis offset: Classic issues revisited and new formulations

    Get PDF
    In response to a systematic methodology assessment program directed to the aeroelastic stability of hingeless helicopter rotor blades, improved basic aeroelastic reformulations and new formulations relating to structural sweep were achieved. Correlational results are presented showing the substantially improved performance of the G400 aeroelastic analysis incorporating these new formulations. The formulations pertain partly to sundry solutions to classic problem areas, relating to dynamic inflow with vortex-ring state operation and basic blade kinematics, but mostly to improved physical modeling of elastic axis offset (structural sweep) in the presence of nonlinear structural twist. Specific issues addressed are an alternate modeling of the delta EI torsional excitation due to compound bending using a force integration approach, and the detailed kinematic representation of an elastically deflected point mass of a beam with both structural sweep and nonlinear twist

    Performance characterization of black boxes with self-controlled load injection for simulation-based sizing

    Get PDF
    International audienceSizing and capacity planning are key issues that must be addressed by anyone wanting to ensure a distributed system will sustain an expected workload. Solutions typically consist in either benchmarking,or modeling and simulating the target system. However, full-scale benchmarking may be too costly and almost impossible, while the granularity of modeling is often limited by the huge complexity and the lack of information about the system. To extract a model for this kind of system, we propose a methodology that combines both solutions by first identifying a middle-grain model made of interconnected black boxes, and then to separately characterize the performance and resource consumption of these black boxes. Then, we present two important issues : saturation and stability, that are key to system capacity characterization. To experiment our methodology, we propose a component-based supporting architecture, introducing control theory issues in a general approach to autonomic computing infrastructures
    corecore