1,207 research outputs found

    Modeling Multi-interest News Sequence for News Recommendation

    Full text link
    A session-based news recommender system recommends the next news to a user by modeling the potential interests embedded in a sequence of news read/clicked by her/him in a session. Generally, a user's interests are diverse, namely there are multiple interests corresponding to different types of news, e.g., news of distinct topics, within a session. %Modeling such multiple interests is critical for precise news recommendation. However, most of existing methods typically overlook such important characteristic and thus fail to distinguish and model the potential multiple interests of a user, impeding accurate recommendation of the next piece of news. Therefore, this paper proposes multi-interest news sequence (MINS) model for news recommendation. In MINS, a news encoder based on self-attention is devised on learn an informative embedding for each piece of news, and then a novel parallel interest network is devised to extract the potential multiple interests embedded in the news sequence in preparation for the subsequent next-news recommendations. The experimental results on a real-world dataset demonstrate that our model can achieve better performance than the state-of-the-art compared models

    Improving End-to-End Sequential Recommendations with Intent-aware Diversification

    Get PDF
    Sequential Recommendation (SRs) that capture users' dynamic intents by modeling user sequential behaviors can recommend closely accurate products to users. Previous work on SRs is mostly focused on optimizing the recommendation accuracy, often ignoring the recommendation diversity, even though it is an important criterion for evaluating the recommendation performance. Most existing methods for improving the diversity of recommendations are not ideally applicable for SRs because they assume that user intents are static and rely on post-processing the list of recommendations to promote diversity. We consider both recommendation accuracy and diversity for SRs by proposing an end-to-end neural model, called Intent-aware Diversified Sequential Recommendation (IDSR). Specifically, we introduce an Implicit Intent Mining module (IIM) into SRs to capture different user intents reflected in user behavior sequences. Then, we design an Intent-aware Diversity Promoting (IDP) loss to supervise the learning of the IIM module and force the model to take recommendation diversity into consideration during training. Extensive experiments on two benchmark datasets show that IDSR significantly outperforms state-of-the-art methods in terms of recommendation diversity while yielding comparable or superior recommendation accuracy

    Sequential Recommendation Based on Multivariate Hawkes Process Embedding With Attention.

    Full text link
    Recommender systems are important approaches for dealing with the information overload problem in the big data era, and various kinds of auxiliary information, including time and sequential information, can help improve the performance of retrieval and recommendation tasks. However, it is still a challenging problem how to fully exploit such information to achieve high-quality recommendation results and improve users' experience. In this work, we present a novel sequential recommendation model, called multivariate Hawkes process embedding with attention (MHPE-a), which combines a temporal point process with the attention mechanism to predict the items that the target user may interact with according to her/his historical records. Specifically, the proposed approach MHPE-a can model users' sequential patterns in their temporal interaction sequences accurately with a multivariate Hawkes process. Then, we perform an accurate sequential recommendation to satisfy target users' real-time requirements based on their preferences obtained with MHPE-a from their historical records. Especially, an attention mechanism is used to leverage users' long/short-term preferences adaptively to achieve an accurate sequential recommendation. Extensive experiments are conducted on two real-world datasets (lastfm and gowalla), and the results show that MHPE-a achieves better performance than state-of-the-art baselines

    AMER: Automatic Behavior Modeling and Interaction Exploration in Recommender System

    Full text link
    User behavior and feature interactions are crucial in deep learning-based recommender systems. There has been a diverse set of behavior modeling and interaction exploration methods in the literature. Nevertheless, the design of task-aware recommender systems still requires feature engineering and architecture engineering from domain experts. In this work, we introduce AMER, namely Automatic behavior Modeling and interaction Exploration in Recommender systems with Neural Architecture Search (NAS). The core contributions of AMER include the three-stage search space and the tailored three-step searching pipeline. In the first step, AMER searches for residual blocks that incorporate commonly used operations in the block-wise search space of stage 1 to model sequential patterns in user behavior. In the second step, it progressively investigates useful low-order and high-order feature interactions in the non-sequential interaction space of stage 2. Finally, an aggregation multi-layer perceptron (MLP) with shortcut connection is selected from flexible dimension settings of stage~3 to combine features extracted from the previous steps. For efficient and effective NAS, AMER employs the one-shot random search in all three steps. Further analysis reveals that AMER's search space could cover most of the representative behavior extraction and interaction investigation methods, which demonstrates the universality of our design. The extensive experimental results over various scenarios reveal that AMER could outperform competitive baselines with elaborate feature engineering and architecture engineering, indicating both effectiveness and robustness of the proposed method
    • …
    corecore