2 research outputs found

    Assistive Gym: A Physics Simulation Framework for Assistive Robotics

    Full text link
    Autonomous robots have the potential to serve as versatile caregivers that improve quality of life for millions of people worldwide. Yet, conducting research in this area presents numerous challenges, including the risks of physical interaction between people and robots. Physics simulations have been used to optimize and train robots for physical assistance, but have typically focused on a single task. In this paper, we present Assistive Gym, an open source physics simulation framework for assistive robots that models multiple tasks. It includes six simulated environments in which a robotic manipulator can attempt to assist a person with activities of daily living (ADLs): itch scratching, drinking, feeding, body manipulation, dressing, and bathing. Assistive Gym models a person's physical capabilities and preferences for assistance, which are used to provide a reward function. We present baseline policies trained using reinforcement learning for four different commercial robots in the six environments. We demonstrate that modeling human motion results in better assistance and we compare the performance of different robots. Overall, we show that Assistive Gym is a promising tool for assistive robotics research.Comment: 8 pages, 5 figures, 2 table

    Learning to Collaborate from Simulation for Robot-Assisted Dressing

    Full text link
    We investigated the application of haptic feedback control and deep reinforcement learning (DRL) to robot-assisted dressing. Our method uses DRL to simultaneously train human and robot control policies as separate neural networks using physics simulations. In addition, we modeled variations in human impairments relevant to dressing, including unilateral muscle weakness, involuntary arm motion, and limited range of motion. Our approach resulted in control policies that successfully collaborate in a variety of simulated dressing tasks involving a hospital gown and a T-shirt. In addition, our approach resulted in policies trained in simulation that enabled a real PR2 robot to dress the arm of a humanoid robot with a hospital gown. We found that training policies for specific impairments dramatically improved performance; that controller execution speed could be scaled after training to reduce the robot's speed without steep reductions in performance; that curriculum learning could be used to lower applied forces; and that multi-modal sensing, including a simulated capacitive sensor, improved performance.Comment: 8 pages, 8 figures, 3 tables; simulation to reality experiment added to evaluation; authors added; modified: title, abstract, conclusion, references; figure adde
    corecore