140,347 research outputs found

    An MDL framework for sparse coding and dictionary learning

    Full text link
    The power of sparse signal modeling with learned over-complete dictionaries has been demonstrated in a variety of applications and fields, from signal processing to statistical inference and machine learning. However, the statistical properties of these models, such as under-fitting or over-fitting given sets of data, are still not well characterized in the literature. As a result, the success of sparse modeling depends on hand-tuning critical parameters for each data and application. This work aims at addressing this by providing a practical and objective characterization of sparse models by means of the Minimum Description Length (MDL) principle -- a well established information-theoretic approach to model selection in statistical inference. The resulting framework derives a family of efficient sparse coding and dictionary learning algorithms which, by virtue of the MDL principle, are completely parameter free. Furthermore, such framework allows to incorporate additional prior information to existing models, such as Markovian dependencies, or to define completely new problem formulations, including in the matrix analysis area, in a natural way. These virtues will be demonstrated with parameter-free algorithms for the classic image denoising and classification problems, and for low-rank matrix recovery in video applications

    Quantum Kernel Mixtures for Probabilistic Deep Learning

    Full text link
    This paper presents a novel approach to probabilistic deep learning (PDL), quantum kernel mixtures, derived from the mathematical formalism of quantum density matrices, which provides a simpler yet effective mechanism for representing joint probability distributions of both continuous and discrete random variables. The framework allows for the construction of differentiable models for density estimation, inference, and sampling, enabling integration into end-to-end deep neural models. In doing so, we provide a versatile representation of marginal and joint probability distributions that allows us to develop a differentiable, compositional, and reversible inference procedure that covers a wide range of machine learning tasks, including density estimation, discriminative learning, and generative modeling. We illustrate the broad applicability of the framework with two examples: an image classification model, which can be naturally transformed into a conditional generative model thanks to the reversibility of our inference procedure; and a model for learning with label proportions, which is a weakly supervised classification task, demonstrating the framework's ability to deal with uncertainty in the training samples
    • …
    corecore