4 research outputs found

    Large Vocabulary Automatic Chord Estimation Using Deep Neural Nets: Design Framework, System Variations and Limitations

    Full text link
    In this paper, we propose a new system design framework for large vocabulary automatic chord estimation. Our approach is based on an integration of traditional sequence segmentation processes and deep learning chord classification techniques. We systematically explore the design space of the proposed framework for a range of parameters, namely deep neural nets, network configurations, input feature representations, segment tiling schemes, and training data sizes. Experimental results show that among the three proposed deep neural nets and a baseline model, the recurrent neural network based system has the best average chord quality accuracy that significantly outperforms the other considered models. Furthermore, our bias-variance analysis has identified a glass ceiling as a potential hindrance to future improvements of large vocabulary automatic chord estimation systems

    A Critical Look at the Applicability of Markov Logic Networks for Music Signal Analysis

    Full text link
    In recent years, Markov logic networks (MLNs) have been proposed as a potentially useful paradigm for music signal analysis. Because all hidden Markov models can be reformulated as MLNs, the latter can provide an all-encompassing framework that reuses and extends previous work in the field. However, just because it is theoretically possible to reformulate previous work as MLNs, does not mean that it is advantageous. In this paper, we analyse some proposed examples of MLNs for musical analysis and consider their practical disadvantages when compared to formulating the same musical dependence relationships as (dynamic) Bayesian networks. We argue that a number of practical hurdles such as the lack of support for sequences and for arbitrary continuous probability distributions make MLNs less than ideal for the proposed musical applications, both in terms of easy of formulation and computational requirements due to their required inference algorithms. These conclusions are not specific to music, but apply to other fields as well, especially when sequential data with continuous observations is involved. Finally, we show that the ideas underlying the proposed examples can be expressed perfectly well in the more commonly used framework of (dynamic) Bayesian networks.Comment: Accepted for presentation at the Ninth International Workshop on Statistical Relational AI (StarAI 2020) at the 34th AAAI Conference on Artificial Intelligence (AAAI) in New York, on February 7th 202

    Artificial Musical Intelligence: A Survey

    Full text link
    Computers have been used to analyze and create music since they were first introduced in the 1950s and 1960s. Beginning in the late 1990s, the rise of the Internet and large scale platforms for music recommendation and retrieval have made music an increasingly prevalent domain of machine learning and artificial intelligence research. While still nascent, several different approaches have been employed to tackle what may broadly be referred to as "musical intelligence." This article provides a definition of musical intelligence, introduces a taxonomy of its constituent components, and surveys the wide range of AI methods that can be, and have been, brought to bear in its pursuit, with a particular emphasis on machine learning methods.Comment: 99 pages, 5 figures, preprint: currently under revie

    DECIBEL: Improving Audio Chord Estimation for Popular Music by Alignment and Integration of Crowd-Sourced Symbolic Representations

    Full text link
    Automatic Chord Estimation (ACE) is a fundamental task in Music Information Retrieval (MIR) and has applications in both music performance and MIR research. The task consists of segmenting a music recording or score and assigning a chord label to each segment. Although it has been a task in the annual benchmarking evaluation MIREX for over 10 years, ACE is not yet a solved problem, since performance has stagnated and modern systems have started to tune themselves to subjective training data. We propose DECIBEL, a new ACE system that exploits widely available MIDI and tab representations to improve ACE from audio only. From an audio file and a set of MIDI and tab files corresponding to the same popular music song, DECIBEL first estimates chord sequences. For audio, state-of-the-art audio ACE methods are used. MIDI files are aligned to the audio, followed by a MIDI chord estimation step. Tab files are transformed into untimed chord sequences and then aligned to the audio. Next, DECIBEL uses data fusion to integrate all estimated chord sequences into one final output sequence. DECIBEL improves all tested state-of-the-art ACE methods by over 3 percent on average. This result shows that the integration of musical knowledge from heterogeneous symbolic music representations is a suitable strategy for addressing challenging MIR tasks such as ACE.Comment: 81 pages, 47 figure
    corecore