749 research outputs found

    Modeling attacks on physical unclonable functions

    Get PDF
    We show in this paper how several proposed Physical Unclonable Functions (PUFs) can be broken by numerical modeling attacks. Given a set of challenge-response pairs (CRPs) of a PUF, our attacks construct a computer algorithm which behaves indistinguishably from the original PUF on almost all CRPs. This algorithm can subsequently impersonate the PUF, and can be cloned and distributed arbitrarily. This breaks the security of essentially all applications and protocols that are based on the respective PUF. The PUFs we attacked successfully include standard Arbited PUFs and Ring Oscillator PUFs of arbitrary sizes, and XO Arbiter PUFs, Lightweight Secure PUFs, and Feed-Forward Arbiter PUFs of up to a given size and complexity. Our attacks are based upon various machine learning techniques including Logistic Regression and Evolution Strategies. Our work leads to new design requirements for secure electrical PUFs, and will be useful to PUF designers and attackers alike.Technische Universitat Munche

    A new Definition and Classification of Physical Unclonable Functions

    Full text link
    A new definition of "Physical Unclonable Functions" (PUFs), the first one that fully captures its intuitive idea among experts, is presented. A PUF is an information-storage system with a security mechanism that is 1. meant to impede the duplication of a precisely described storage-functionality in another, separate system and 2. remains effective against an attacker with temporary access to the whole original system. A novel classification scheme of the security objectives and mechanisms of PUFs is proposed and its usefulness to aid future research and security evaluation is demonstrated. One class of PUF security mechanisms that prevents an attacker to apply all addresses at which secrets are stored in the information-storage system, is shown to be closely analogous to cryptographic encryption. Its development marks the dawn of a new fundamental primitive of hardware-security engineering: cryptostorage. These results firmly establish PUFs as a fundamental concept of hardware security.Comment: 6 pages, 3 figures; Proceedings "CS2 '15 Proceedings of the Second Workshop on Cryptography and Security in Computing Systems", Amsterdam, 2015, ACM Digital Librar
    • …
    corecore