23,680 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Optimal co-design of control, scheduling and routing in multi-hop control networks

    Full text link
    A Multi-hop Control Network consists of a plant where the communication between sensors, actuators and computational units is supported by a (wireless) multi-hop communication network, and data flow is performed using scheduling and routing of sensing and actuation data. Given a SISO LTI plant, we will address the problem of co-designing a digital controller and the network parameters (scheduling and routing) in order to guarantee stability and maximize a performance metric on the transient response to a step input, with constraints on the control effort, on the output overshoot and on the bandwidth of the communication channel. We show that the above optimization problem is a polynomial optimization problem, which is generally NP-hard. We provide sufficient conditions on the network topology, scheduling and routing such that it is computationally feasible, namely such that it reduces to a convex optimization problem.Comment: 51st IEEE Conference on Decision and Control, 2012. Accepted for publication as regular pape
    • …
    corecore