3,458 research outputs found

    Task Runtime Prediction in Scientific Workflows Using an Online Incremental Learning Approach

    Full text link
    Many algorithms in workflow scheduling and resource provisioning rely on the performance estimation of tasks to produce a scheduling plan. A profiler that is capable of modeling the execution of tasks and predicting their runtime accurately, therefore, becomes an essential part of any Workflow Management System (WMS). With the emergence of multi-tenant Workflow as a Service (WaaS) platforms that use clouds for deploying scientific workflows, task runtime prediction becomes more challenging because it requires the processing of a significant amount of data in a near real-time scenario while dealing with the performance variability of cloud resources. Hence, relying on methods such as profiling tasks' execution data using basic statistical description (e.g., mean, standard deviation) or batch offline regression techniques to estimate the runtime may not be suitable for such environments. In this paper, we propose an online incremental learning approach to predict the runtime of tasks in scientific workflows in clouds. To improve the performance of the predictions, we harness fine-grained resources monitoring data in the form of time-series records of CPU utilization, memory usage, and I/O activities that are reflecting the unique characteristics of a task's execution. We compare our solution to a state-of-the-art approach that exploits the resources monitoring data based on regression machine learning technique. From our experiments, the proposed strategy improves the performance, in terms of the error, up to 29.89%, compared to the state-of-the-art solutions.Comment: Accepted for presentation at main conference track of 11th IEEE/ACM International Conference on Utility and Cloud Computin

    Automatic deployment and reproducibility of workflow on the Cloud using container virtualization

    Get PDF
    PhD ThesisCloud computing is a service-oriented approach to distributed computing that has many attractive features, including on-demand access to large compute resources. One type of cloud applications are scientific work ows, which are playing an increasingly important role in building applications from heterogeneous components. Work ows are increasingly used in science as a means to capture, share, and publish computational analysis. Clouds can offer a number of benefits to work ow systems, including the dynamic provisioning of the resources needed for computation and storage, which has the potential to dramatically increase the ability to quickly extract new results from the huge amounts of data now being collected. However, there are increasing number of Cloud computing platforms, each with different functionality and interfaces. It therefore becomes increasingly challenging to de ne work ows in a portable way so that they can be run reliably on different clouds. As a consequence, work ow developers face the problem of deciding which Cloud to select and - more importantly for the long-term - how to avoid vendor lock-in. A further issue that has arisen with work ows is that it is common for them to stop being executable a relatively short time after they were created. This can be due to the external resources required to execute a work ow - such as data and services - becoming unavailable. It can also be caused by changes in the execution environment on which the work ow depends, such as changes to a library causing an error when a work ow service is executed. This "work ow decay" issue is recognised as an impediment to the reuse of work ows and the reproducibility of their results. It is becoming a major problem, as the reproducibility of science is increasingly dependent on the reproducibility of scientific work ows. In this thesis we presented new solutions to address these challenges. We propose a new approach to work ow modelling that offers a portable and re-usable description of the work ow using the TOSCA specification language. Our approach addresses portability by allowing work ow components to be systematically specifed and automatically - v - deployed on a range of clouds, or in local computing environments, using container virtualisation techniques. To address the issues of reproducibility and work ow decay, our modelling and deployment approach has also been integrated with source control and container management techniques to create a new framework that e ciently supports dynamic work ow deployment, (re-)execution and reproducibility. To improve deployment performance, we extend the framework with number of new optimisation techniques, and evaluate their effect on a range of real and synthetic work ows.Ministry of Higher Education and Scientific Research in Iraq and Mosul Universit
    • …
    corecore