117 research outputs found

    Model-predictive target defense by team of unmanned surface vehicles operating in uncertain environments

    Full text link

    Model-Predictive Strategy Generation for Multi-Agent Pursuit-Evasion Games

    Get PDF
    Multi-agent pursuit-evasion games can be used to model a variety of different real world problems including surveillance, search-and-rescue, and defense-related scenarios. However, many pursuit-evasion problems are computationally difficult, which can be problematic for domains with complex geometry or large numbers of agents. To compound matters further, practical applications often require planning methods to operate under high levels of uncertainty or meet strict running-time requirements. These challenges strongly suggest that heuristic methods are needed to address pursuit-evasion problems in the real world. In this dissertation I present heuristic planning techniques for three related problem domains: visibility-based pursuit-evasion, target following with differential motion constraints, and distributed asset guarding with unmanned sea-surface vehicles. For these domains, I demonstrate that heuristic techniques based on problem relaxation and model-predictive simulation can be used to efficiently perform low-level control action selection, motion goal selection, and high-level task allocation. In particular, I introduce a polynomial-time algorithm for control action selection in visibility-based pursuit-evasion games, where a team of pursuers must minimize uncertainty about the location of an evader. The algorithm uses problem relaxation to estimate future states of the game. I also show how to incorporate a probabilistic opponent model learned from interaction traces of prior games into the algorithm. I verify experimentally that by performing Monte Carlo sampling over the learned model to estimate the location of the evader, the algorithm performs better than existing planning approaches based on worst-case analysis. Next, I introduce an algorithm for motion goal selection in pursuit-evasion scenarios with unmanned boats. I show how a probabilistic model accounting for differential motion constraints can be used to project the future positions of the target boat. Motion goals for the pursuer boat can then be selected based on those projections. I verify experimentally that motion goals selected with this technique are better optimized for travel time and proximity to the target boat when compared to motion goals selected based on the current position of the target boat. Finally, I introduce a task-allocation technique for a team of unmanned sea-surface vehicles (USVs) responsible for guarding a high-valued asset. The team of USVs must intercept and block a set of hostile intruder boats before they reach the asset. The algorithm uses model-predictive simulation to estimate the value of high-level task assignments, which are then realized by a set of learned low-level behaviors. I show experimentally that using model-predictive simulations based on Monte-Carlo sampling is more effective than hand-coded evaluation heuristics

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods

    Data-driven Metareasoning for Collaborative Autonomous Systems

    Get PDF
    When coordinating their actions to accomplish a mission, the agents in a multi-agent system may use a collaboration algorithm to determine which agent performs which task. This paper describes a novel data-driven metareasoning approach that generates a metareasoning policy that the agents can use whenever they must collaborate to assign tasks. This metareasoning approach collects data about the performance of the algorithms at many decision points and uses this data to train a set of surrogate models that can estimate the expected performance of different algorithms. This yields a metareasoning policy that, based on the current state of the system, estimated the algorithms’ expected performance and chose the best one. For a ship protection scenario, computational results show that one version of the metareasoning policy performed as well as the best component algorithm but required less computational effort. The proposed data-driven metareasoning approach could be a promising tool for developing policies to control multi-agent autonomous systems.This work was supported in part by the U.S. Naval Air Warfare Center-Aircraft Division

    Unsupervised learning based coordinated multi-task allocation for unmanned surface vehicles

    Get PDF
    In recent decades, unmanned surface vehicles (USVs) are attracting increasing attention due to their underlying capability in autonomously undertaking complex maritime tasks in constrained environments. However, the autonomy level of USVs is still limited, especially when being deployed to conduct multiple tasks simultaneously. This paper, therefore, aims to improve USVs autonomy level by investigating and developing an effective and efficient task management algorithm for multi-USV systems. To better deal with challenging requirements such as allocating vast tasks in cluttered environments, the task management has been de-composed into two submissions, i.e., task allocation and task execution. More specifically, unsupervised learning strategies have been used with an improved K-means algorithm proposed to first assign different tasks for a multi-USV system then a self-organising map (SOM) been implemented to deal with the task execution problem based upon the assigned tasks for each USV. Differing to other work, the communication problem that is crucial for USVs in a constrained environment has been specifically resolved by designing a new competition strategy for K-means algorithm. Key factors that will influence the communication capability in practical applications have been taken into account. A holistic task management architecture has been designed by integrating both the task allocation and task execution algorithms, and a number of simulations in both simulated and practical maritime environments have been carried out to validate the effectiveness of the proposed algorithms

    U.S. Unmanned Aerial Vehicles (UAVS) and Network Centric Warfare (NCW) impacts on combat aviation tactics from Gulf War I through 2007 Iraq

    Get PDF
    Unmanned, aerial vehicles (UAVs) are an increasingly important element of many modern militaries. Their success on battlefields in Afghanistan, Iraq, and around the globe has driven demand for a variety of types of unmanned vehicles. Their proven value consists in low risk and low cost, and their capabilities include persistent surveillance, tactical and combat reconnaissance, resilience, and dynamic re-tasking. This research evaluates past, current, and possible future operating environments for several UAV platforms to survey the changing dynamics of combat-aviation tactics and make recommendations regarding UAV employment scenarios to the Turkish military. While UAVs have already established their importance in military operations, ongoing evaluations of UAV operating environments, capabilities, technologies, concepts, and organizational issues inform the development of future systems. To what extent will UAV capabilities increasingly define tomorrow's missions, requirements, and results in surveillance and combat tactics? Integrating UAVs and concepts of operations (CONOPS) on future battlefields is an emergent science. Managing a transition from manned- to unmanned and remotely piloted aviation platforms involves new technological complexity and new aviation personnel roles, especially for combat pilots. Managing a UAV military transformation involves cultural change, which can be measured in decades.http://archive.org/details/usunmannedaerial109454211Turkish Air Force authors.Approved for public release; distribution is unlimited

    LOGISTICS IN CONTESTED ENVIRONMENTS

    Get PDF
    This report examines the transport and delivery of logistics in contested environments within the context of great-power competition (GPC). Across the Department of Defense (DOD), it is believed that GPC will strain our current supply lines beyond their capacity to maintain required warfighting capability. Current DOD efforts are underway to determine an appropriate range of platforms, platform quantities, and delivery tactics to meet the projected logistics demand in future conflicts. This report explores the effectiveness of various platforms and delivery methods through analysis in developed survivability, circulation, and network optimization models. Among other factors, platforms are discriminated by their radar cross-section (RCS), noise level, speed, cargo capacity, and self-defense capability. To maximize supply delivered and minimize the cost of losses, the results of this analysis indicate preference for utilization of well-defended convoys on supply routes where bulk supply is appropriate and smaller, and widely dispersed assets on shorter, more contested routes with less demand. Sensitivity analysis on these results indicates system survivability can be improved by applying RCS and noise-reduction measures to logistics assets.Director, Warfare Integration (OPNAV N9I)Major, Israel Defence ForcesCivilian, Singapore Technologies Engineering Ltd, SingaporeCommander, Republic of Singapore NavyCommander, United States NavyCaptain, Singapore ArmyLieutenant, United States NavyLieutenant, United States NavyMajor, Republic of Singapore Air ForceCaptain, United States Marine CorpsLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyCaptain, Singapore ArmyLieutenant Junior Grade, United States NavyCaptain, Singapore ArmyLieutenant Colonel, Republic of Singapore Air ForceApproved for public release. distribution is unlimite

    The Politics of Combat : The Political and Strategic Impact of Tactical-Level Subcultures, 1939-1995

    Get PDF
    This dissertation argues that lower-level military leaders, commanding between a dozen and a few hundred troops, can have a major political and strategic impact. Furthermore, it is argued that the decisions made by these lower-level military leaders are shaped by subcultures, in particular under conditions of stress and uncertainty. The concept of tactical-level subcultures is defined, drawing on existing research from public administration, military psychology, tactical decision-making and management studies, and used as a conceptual framework for the dissertation. Using the conceptual framework, the theory is then presented, stating that the degree of convergence or divergence between these subcultures and the political and strategic policy objectives can be used to predict the likelihood of compliant output, defined as decisions that are in line with the policy objectives, and thus more likely to produce the desired outcome. Eight case studies are employed to illustrate the conceptual framework and theory. The case studies are arranged in four pairs, which are first compared to each other. In the summary of the dissertation, the case pairs are then evaluated as a whole. In the first case pair, German and American submarine warfare is compared by studying the first year of combat operations of each organization, in 1939-1940 and 1941-1942, respectively. In the second case pair, two Israeli armored units fighting on the Golan Heights in 1973 are compared to German independent tank units on the Eastern Front in World War II in 1942-1945. In the third case pair, atrocities committed by the American Charlie Company in Song My in 1968 is compared to the development of the German concentration camp guards (Totenkopfverbände) in 1933-1942. In the fourth and final case pair, the Swedish-Danish-Norwegian peacekeeping battalion Nordbat 2 in Bosnia in 1993-1995 is compared to the Dutch battalion operating in the same country during the same time period. The case studies show that tactical-level subcultures can have a significant impact on the outcomes of war, the conduct of diplomacy, the propensity to commit atrocities and the effectiveness of military units in demanding peacekeeping operations. The dissertation also finds that lower-level military leaders should be regarded as a type of street-level bureaucrats, and that the impact they can have on major political and strategic outcomes has largely been overlooked within political science
    • …
    corecore