90,807 research outputs found

    The fused Kolmogorov filter: A nonparametric model-free screening method

    Full text link
    A new model-free screening method called the fused Kolmogorov filter is proposed for high-dimensional data analysis. This new method is fully nonparametric and can work with many types of covariates and response variables, including continuous, discrete and categorical variables. We apply the fused Kolmogorov filter to deal with variable screening problems emerging from a wide range of applications, such as multiclass classification, nonparametric regression and Poisson regression, among others. It is shown that the fused Kolmogorov filter enjoys the sure screening property under weak regularity conditions that are much milder than those required for many existing nonparametric screening methods. In particular, the fused Kolmogorov filter can still be powerful when covariates are strongly dependent on each other. We further demonstrate the superior performance of the fused Kolmogorov filter over existing screening methods by simulations and real data examples.Comment: Published at http://dx.doi.org/10.1214/14-AOS1303 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Robust rank correlation based screening

    Full text link
    Independence screening is a variable selection method that uses a ranking criterion to select significant variables, particularly for statistical models with nonpolynomial dimensionality or "large p, small n" paradigms when p can be as large as an exponential of the sample size n. In this paper we propose a robust rank correlation screening (RRCS) method to deal with ultra-high dimensional data. The new procedure is based on the Kendall \tau correlation coefficient between response and predictor variables rather than the Pearson correlation of existing methods. The new method has four desirable features compared with existing independence screening methods. First, the sure independence screening property can hold only under the existence of a second order moment of predictor variables, rather than exponential tails or alikeness, even when the number of predictor variables grows as fast as exponentially of the sample size. Second, it can be used to deal with semiparametric models such as transformation regression models and single-index models under monotonic constraint to the link function without involving nonparametric estimation even when there are nonparametric functions in the models. Third, the procedure can be largely used against outliers and influence points in the observations. Last, the use of indicator functions in rank correlation screening greatly simplifies the theoretical derivation due to the boundedness of the resulting statistics, compared with previous studies on variable screening. Simulations are carried out for comparisons with existing methods and a real data example is analyzed.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1024 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: text overlap with arXiv:0903.525

    Feature Screening via Distance Correlation Learning

    Full text link
    This paper is concerned with screening features in ultrahigh dimensional data analysis, which has become increasingly important in diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS, for short). The DC-SIS can be implemented as easily as the sure independence screening procedure based on the Pearson correlation (SIS, for short) proposed by Fan and Lv (2008). However, the DC-SIS can significantly improve the SIS. Fan and Lv (2008) established the sure screening property for the SIS based on linear models, but the sure screening property is valid for the DC-SIS under more general settings including linear models. Furthermore, the implementation of the DC-SIS does not require model specification (e.g., linear model or generalized linear model) for responses or predictors. This is a very appealing property in ultrahigh dimensional data analysis. Moreover, the DC-SIS can be used directly to screen grouped predictor variables and for multivariate response variables. We establish the sure screening property for the DC-SIS, and conduct simulations to examine its finite sample performance. Numerical comparison indicates that the DC-SIS performs much better than the SIS in various models. We also illustrate the DC-SIS through a real data example.Comment: 32 pages, 5 tables and 1 figure. Wei Zhong is the corresponding autho
    • …
    corecore