1,303 research outputs found

    High resolution in-vivo MR-STAT using a matrix-free and parallelized reconstruction algorithm

    Get PDF
    MR-STAT is a recently proposed framework that allows the reconstruction of multiple quantitative parameter maps from a single short scan by performing spatial localisation and parameter estimation on the time domain data simultaneously, without relying on the FFT. To do this at high-resolution, specialized algorithms are required to solve the underlying large-scale non-linear optimisation problem. We propose a matrix-free and parallelized inexact Gauss-Newton based reconstruction algorithm for this purpose. The proposed algorithm is implemented on a high performance computing cluster and is demonstrated to be able to generate high-resolution (1mm×1mm1mm \times 1mm in-plane resolution) quantitative parameter maps in simulation, phantom and in-vivo brain experiments. Reconstructed T1T_1 and T2T_2 values for the gel phantoms are in agreement with results from gold standard measurements and for the in-vivo experiments the quantitative values show good agreement with literature values. In all experiments short pulse sequences with robust Cartesian sampling are used for which conventional MR Fingerprinting reconstructions are shown to fail.Comment: Accepted by NMR in Biomedicine on 2019-12-0

    Compressed Quantitative MRI: Bloch Response Recovery through Iterated Projection

    Get PDF
    Inspired by the recently proposed Magnetic Resonance Fingerprinting technique, we develop a principled compressed sensing framework for quantitative MRI. The three key components are: a random pulse excitation sequence following the MRF technique; a random EPI subsampling strategy and an iterative projection algorithm that imposes consistency with the Bloch equations. We show that, as long as the excitation sequence possesses an appropriate form of persistent excitation, we are able to achieve accurate recovery of the proton density, T1T_1, T2T_2 and off-resonance maps simultaneously from a limited number of samples.Comment: 5 pages 2 figure

    HYDRA: Hybrid Deep Magnetic Resonance Fingerprinting

    Get PDF
    Purpose: Magnetic resonance fingerprinting (MRF) methods typically rely on dictio-nary matching to map the temporal MRF signals to quantitative tissue parameters. Such approaches suffer from inherent discretization errors, as well as high computational complexity as the dictionary size grows. To alleviate these issues, we propose a HYbrid Deep magnetic ResonAnce fingerprinting approach, referred to as HYDRA. Methods: HYDRA involves two stages: a model-based signature restoration phase and a learning-based parameter restoration phase. Signal restoration is implemented using low-rank based de-aliasing techniques while parameter restoration is performed using a deep nonlocal residual convolutional neural network. The designed network is trained on synthesized MRF data simulated with the Bloch equations and fast imaging with steady state precession (FISP) sequences. In test mode, it takes a temporal MRF signal as input and produces the corresponding tissue parameters. Results: We validated our approach on both synthetic data and anatomical data generated from a healthy subject. The results demonstrate that, in contrast to conventional dictionary-matching based MRF techniques, our approach significantly improves inference speed by eliminating the time-consuming dictionary matching operation, and alleviates discretization errors by outputting continuous-valued parameters. We further avoid the need to store a large dictionary, thus reducing memory requirements. Conclusions: Our approach demonstrates advantages in terms of inference speed, accuracy and storage requirements over competing MRF method
    corecore